Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T01:54:39.299Z Has data issue: false hasContentIssue false

Chemistry Strategies for Organic 14C Samples

Published online by Cambridge University Press:  18 July 2016

G. J. Van Klinken
Affiliation:
Oxford Radiocarbon Accelerator Unit, 6 Keble Road, Oxford OX1 3QJ, United Kingdom
R. E. M. Hedges
Affiliation:
Oxford Radiocarbon Accelerator Unit, 6 Keble Road, Oxford OX1 3QJ, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pretreatment of organic samples can be achieved by removal of contaminants, or, alternatively, by isolation of sample-specific components. We discuss the molecular aspects of these two pretreatment types, together with an assessment of their effectiveness in relation to sample type. The main division in sample type is the one between carbohydrates and proteins, leading to opposite chemical strategies for the two sample categories. Recommendations for routine 14C chemistry of organic samples also include the standardization of quality screening procedures using chemical, stable isotope and elemental data that can be collected routinely during the pretreatment of each sample.

Type
Part 1: Methods
Copyright
Copyright © The American Journal of Science 

References

Collins, M. J., Hedges, R. E. M., Riley, M. and Nemethy, S. 1996 Clues to the decay of bone collagen. ABI Newsletter 1996(3): 5154.Google Scholar
Hedges, R. E. M. and van Klinken, G. J. 1993 Proceedings of the Second Oxford Workshop on bone diagenesis, Oxford, 1993. Journal of Archaeological Science 22(7): 145340.Google Scholar
Hoering, T. C. 1973 A comparison of melanoidin and humic acid. Carnegie Institution Washington Yearbook 72: 682690.Google Scholar
Mejbaum-Katzenellenbogen, W. and Dobryszycka, W. M. 1962 Immunochemical properties of the serum proteins after regeneration from the protein-tannin compounds. Nature 193: 12881289.CrossRefGoogle ScholarPubMed
Mejbaum-Katzenellenbogen, W., Dobryszycka, W. M., Boguslawska-Jaworska, J. and Morawiecka, B. 1959 Regeneration of protein from insoluble protein-tannin compounds. Nature 184: 17991800.Google Scholar
Nelson, D. E. 1991 A new method for carbon isotopic analysis of protein. Science 251:552–554.Google Scholar
Schnitzler, M. and Ortiz de Serra, M. I. 1973 The chemical degradation of a humic acid. Canadian Journal of Chemistry 51: 15541566.CrossRefGoogle Scholar
Stafford, T. W., Hare, P. E., Currie, L., Jull, A. J. T. and Donahue, D. J. 1991 Accelerator radiocarbon dating at the molecular level. Journal of Archaeological Science 18: 3572.CrossRefGoogle Scholar
Stafford, T. W., Jull, A. J. T., Brendel, K., Duhamel, R. C. and Donahue, D. 1987 Study of bone radiocarbon dating accuracy at the University of Arizona NSF accelerator facility for radioisotope analysis. Radiocarbon 29(1): 2444.CrossRefGoogle Scholar
van Klinken, G. J. (ms.) 1991 Dating and dietary reconstruction by isotopic analysis of amino acids in fossil bone collagen – with special reference to the Caribbean. Doctoral thesis, University of Groningen, The Netherlands: 111 p.Google Scholar
van Klinken, G. J., Bowles, A. D. and Hedges, R. E. M. 1994 Radiocarbon dating of peptides isolated from fossil bone collagen by collagenase digestion and re-versed-phase chromatography. Geochimica et Cosmochimica Acta 58(11): 25432551.Google Scholar
van Klinken, G. J. and Hedges, R. E. M. 1995 Experiments on collagen-humic interactions: Speed of humic acid uptake, and effects of diverse chemical treatments. Journal of Archaeological Science 22(2): 263270.Google Scholar
van Klinken, G. J. and Mook, W. G. 1990 Preparative high-performance liquid chromatographic separation of individual amino acids derived from fossil bone collagen. Radiocarbon 32(2): 155164.Google Scholar