Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T03:48:05.511Z Has data issue: false hasContentIssue false

Changes in CO2 Emission Sources in Mexico City Metropolitan Area Deduced from Radiocarbon Concentrations in Tree Rings

Published online by Cambridge University Press:  02 November 2017

Laura E Beramendi-Orosco*
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México Laboratorio Universitario de Radiocarbono, Laboratorio Nacional de Geoquímica y Mineralogía, Ciudad Universitaria, 04510, México
Galia González-Hernández
Affiliation:
Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México Laboratorio Universitario de Radiocarbono, Laboratorio Nacional de Geoquímica y Mineralogía, Ciudad Universitaria, 04510, México
Angeles Martínez-Reyes
Affiliation:
Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México
Ofelia Morton-Bermea
Affiliation:
Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México
Francisco J Santos-Arévalo
Affiliation:
Centro Nacional de Aceleradores (Universidad de Sevilla, CSIC, Junta de Andalucía), Avda. Thomas Alva Edison 7, Isla de la Cartuja, Seville, 41092, Spain
Isabel Gómez-Martínez
Affiliation:
Centro Nacional de Aceleradores (Universidad de Sevilla, CSIC, Junta de Andalucía), Avda. Thomas Alva Edison 7, Isla de la Cartuja, Seville, 41092, Spain
José Villanueva-Díaz
Affiliation:
Laboratorio Nacional de Dendrocronología, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Gómez Palacio, Durango, Apdo. Postal 41, México
*
*Corresponding author. Email: laurab@geologia.unam.mx.

Abstract

We present radiocarbon (14C) in tree rings from Mexico City and a reconstruction of fossil CO2 concentrations for the last five decades, as part of a research program to understand the 14C dynamics in this complex urban area. Background values were established by 14C concentrations in tree rings from a nearby clean area. Agreement between background and NH-zone 2 values indicate Taxodium mucronatum is a good biomonitor for annual atmospheric 14C variations. Values for the urban tree rings were significantly lower than background values, indicating a 14C depletion from fossil CO2 emissions. There is an increasing trend of fossil CO2 between 1960 and 1990, in agreement with the population growth and the increasing demand for fossil fuels in Mexico City. Between 1990 and 2000, there is an apparent decrease in fossil CO2 concentration, increasing again after 2000. The decrease in 2000, despite being of the same magnitude as the overall uncertainty, may reflect environmental policies that improved the energy efficiency and reduced CO2 emissions in the area. The increase in fossil CO2 concentration between 2000 and 2010 may be attributable to the significant growth of motor vehicle usage in Mexico City, which made transportation the main energy-demanding and -emitting sector.

Type
Research Article
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beramendi-Orosco, LE, Gonzalez-Hernandez, G, Villanueva-Diaz, J, Santos-Arevalo, FJ, Gomez-Martinez, I, Cienfuegos-Alvarado, E, Morales-Puente, P, Urrutia-Fucugauchi, J. 2010. Modern radiocarbon levels for northwestern Mexico derived from tree rings—a comparison with Northern Hemisphere zones 2 and 3 curves. Radiocarbon 52(2–3):907914.CrossRefGoogle Scholar
Beramendi-Orosco, LE, Sergio Hernandez-Morales, S, Gonzalez-Hernandez, G, Constante-Garcia, V, Villanueva-Diaz, J. 2013. Dendrochronological potential of Fraxinus uhdei and its use as bioindicator of fossil CO2 emissions deduced from radiocarbon concentrations in tree rings. Radiocarbon 55(3–4):833840.CrossRefGoogle Scholar
Beramendi-Orosco, LE, Gonzalez-Hernandez, G, Martinez-Jurado, A, Martinez-Reyes, A, Garcia-Samano, A, Villanueva-Diaz, J, Santos-Arevalo, FJ, Gomez-Martinez, I, Amador-Muñoz, O. 2015. Temporal and spatial variations of atmospheric radiocarbon in the Mexico City Metropolitan Area. Radiocarbon 57(3):363375.CrossRefGoogle Scholar
Capano, M, Marzaioli, F, Sirignano, C, Altieri, S, Lubritto, C, D’Onofrio, A, Terrasi, F. 2010. 14C AMS measurements in tree rings to estimate local fossil CO2 in Bosco Fontana forest (Mantova, Italy). Nuclear Instruments and Methods in Physics Research B 268:11131116.CrossRefGoogle Scholar
DDF (Departamento del Distrito Federal). 1990. Programa Integral contra la Contaminación Atmosférica (PICCA). Un compromiso común. Zona Metropolitana. México, D.F. Available at: http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/picca/#p=1. Accessed October 2016.Google Scholar
DDF (Departamento del Distrito Federal). 1996. Programa para Mejorar la Calidad del Aire en el Valle de México (PROAIRE) 1995–2000. Available at: http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/proaire1995-2000/. Accessed October 2016.Google Scholar
Djuricin, S, Xu, X, Pataki, DE. 2012. The radiocarbon composition of tree rings as a tracer of local fossil fuel emissions in the Los Angeles basin: 1980–2008. Journal of Geophysical Research 117:D12302.CrossRefGoogle Scholar
Doebelin, EO. 1990. Measurement Systems: Application and Design. 4th edition. McGraw-Hill. 960 p.Google Scholar
Escamilla-Herrera, I, Santos-Cerquera, C. 2012. La Zona Metropolitana del Valle de México: transformación urbano-rural en la región Centro de México. In: XXII Coloquio Internacional de Geocrítica, Bogota, Colombia, 7–11 May 2012.Google Scholar
Graven, HD, Gruber, N. 2011. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2 . Atmospheric Chemistry and Physics 11:1233912349.CrossRefGoogle Scholar
Graven, HD, Stephens, BB, Guilderson, TP, Campos, TL, Schimel, DS, Campbell, JE, Keeling, RF. 2009. Vertical profiles of biospheric and fossil fuel-derived CO2 and fossil fuel CO2:CO ratios from airborne measurements of Δ14C, CO2 and CO above Colorado, USA. Tellus 61B:536546.CrossRefGoogle Scholar
Grootes, PM, Farwell, GW, Schmidt, FH, Leach, DD, Stuiver, M. 1989. Rapid response of tree cellulose radiocarbon content to changes in atmospheric 14CO2 concentration. Tellus 41B:134148.CrossRefGoogle Scholar
Harmon, ME, Bond‐Lamberty, B, Tang, J, Vargas, R. 2011. Heterotrophic respiration in disturbed forests: a review with examples from North America. Journal of Geophysical Research 116:G00K04.CrossRefGoogle Scholar
Hsueh, DY, Krakauer, NY, Randerson, JT, Xu, X, Trumbore, SE, Southon, JR. 2007. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophysical Research Letters 34, L02816.CrossRefGoogle Scholar
Hua, Q, Barbetti, M. 2004. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46(3):12731298.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):20592072.CrossRefGoogle Scholar
INEGI (Instituto Nacional de Estadística). 2014. Cuaderno estadístico y geográfico de la zona metropolitana del Valle de México. http://www.beta.inegi.org.mx/app/biblioteca/ficha.html?upc=702825068318. Accessed October 2016.Google Scholar
INEGI (Instituto Nacional de Estadística). 2016. Mapoteca Digital. http://cuentame.inegi.org.mx/mapas/nacional.aspx?tema=M. Accessed October 2016.Google Scholar
Jauregui, E. 2004. Impact of land-use changes on the climate of the Mexico City Region. Investigaciones Geográficas, Boletín del Instituto de Geografía, UNAM 55:4660.Google Scholar
Keller, ED, Turnbull, JC, Norris, MW. 2016. Detecting long-term changes in point-source fossil CO2 emissions with tree rings archives. Atmospheric Chemistry and Physics 16:54815495.CrossRefGoogle Scholar
Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophysical Research Letters 30(23):2194.CrossRefGoogle Scholar
Levin, I, Hammer, S, Kromer, B, Meinhardt, F. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391:211216.CrossRefGoogle ScholarPubMed
Levin, I, Rödenbeck, C. 2008. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations? Naturwissenschaften 95:203208.CrossRefGoogle ScholarPubMed
Nemec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(2–3):13581370.CrossRefGoogle Scholar
OECD (Organisation for Economic Co-operation and Development). 2013. OECD Environmental Performance Reviews: Mexico 2013, OECD Publishing. Available at: http://www.oecd.org/mexico/oecd-environmental-performance-reviews-mexico-2013-9789264180109-en.htm. Accessed October 2016.Google Scholar
Rakowski, AZ, Pawelczyk, S, Pazdur, A. 2001. Changes of 14C concentration in modern trees from Upper Silesia region, Poland. Radiocarbon 43(2B): 679689.CrossRefGoogle Scholar
Rakowski, AZ, Nakamura, T, Pazdur, A. 2008. Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings. Journal of Environmental Radioactivity 99(10):15581565.CrossRefGoogle ScholarPubMed
Randerson, JT, Enting, IG, Schuur, EAG, Caldeira, K, Fung, IY. 2002. Seasonal and latitudinal variability of troposphere D14CO2: post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochemical Cycles 16(4):1112.CrossRefGoogle Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):12991304.Google Scholar
Rolph, G, Stein, A, Stunder, B. 2017. Real-time Environmental Applications and Display sYstem: READY. Environmental Modelling & Software 95:210228.CrossRefGoogle Scholar
SEDEMA (Secretaría del Medio Ambiente de la Ciudad de México). 2000. Inventario de emisiones a la atmósfera Zona Metropolitana del Valle de México 2000. Available at: http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/inventario-emisiones-zmvm2000/#p=1. Accessed October 2016.Google Scholar
SEDEMA (Secretaría del Medio Ambiente de la Ciudad de México). 2012. Inventario de emisiones contaminantes y de efecto invernadero de la Zona Metropolitana del Valle de México 2010. Available at: http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/inventario-emisiones-zmvm-gei2010/. Accessed October 2016.Google Scholar
SEDEMA (Secretaría del Medio Ambiente de la Ciudad de México). 2016. Inventario de Emisiones de la CDMX 2014, contaminantes criterio, tóxicos y de efecto invernadero. Avalilable at: http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/inventario-emisiones-cdmx2014-2/. Accessed October 2016.Google Scholar
Stahle, DW, Villanueva-Diaz, J, Burnette, DJ, Cerano-Paredes, J, Heim, RR, Fye, FK, Acuña-Soto, R, Therrell, MD, Cleaveland, MK, Stahle, DK. 2011. Major Mesoamerican droughts of the past millennium. Geophysical Research Letters 38(5):L05703.CrossRefGoogle Scholar
Stein, AF, Draxler, RR, Rolph, GD, Stunder, BJB, Cohen, MD, Ngan, F. 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96:20592077.CrossRefGoogle Scholar
Stokes, MA, Smiley, TL. 1968. An Introduction to Tree-Ring Dating. Chicago: University of Chicago Press. 73 p.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Synal, HA, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods B 259(1):713.CrossRefGoogle Scholar
Tans, P, Keeling, R. 2016. Trends in Atmospheric Carbon Dioxide, Mauna Loa CO2 annual mean data. Available at: ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_annmean_mlo.txt. Accessed October 2016.Google Scholar
Turnbull, JC, Miller, JB, Lehman, SJ, Tans, PP, Sparks, RJ, Southon, J. 2006. Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophysical Research Letters 33:L01817.CrossRefGoogle Scholar
Turnbull, JC, Sweeney, C, Karion, A, Newberger, T, Lehman, SJ, Tans, PP, Davis, KJ, Lauvaux, T, Miles, NL, Richardson, SJ, Cambaliza, MO, Shepson, PB, Gurney, K, Patarasuk, R, Razlivanov, I. 2015. Toward quantification and source sector identification of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment. Journal of Geophysical Research Atmospheres 120:292312.CrossRefGoogle Scholar
Turnbull, JC, Graven, HD, Krakauer, NY. 2016. Radiocarbon in the atmosphere. In: Schuur EAG, Druffel ERM, Trumbore SE, editors. Radiocarbon and Climate Change. Springer International Publishing. p 83137.Google Scholar
Vay, SA, Tyler, SC, Choi, Y, Blake, DR, Blake, NJ, Sachse, GW, Diskin, GS, Singh, HB. 2009. Sources and transport of Δ14C in CO2 within the Mexico City Basin and vicinity. Atmospheric Chemistry and Physics 9:49734985.CrossRefGoogle Scholar
Villanueva-Díaz, J, Stahle, DW, Therrel, MD, Cleaveland, MK, Camacho Morfín, F, Núñez Díaz de la Fuente, P, Gómez Chávez, S, Sánchez Sesma, J, Ramírez García, JA. 2003. Registros climáticos de los ahuehuetes de Chapultepec en los últimos 450 años. Boletín del Archivo Histórico del Agua 23:3443.Google Scholar
Wacker, L, Nemeç, M, Bourquin, J. 2010a. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8):931934.CrossRefGoogle Scholar
Wacker, L, Christl, M, Synal, H-A. 2010b. Bats: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268(7–8):976979.CrossRefGoogle Scholar