Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T19:53:19.684Z Has data issue: false hasContentIssue false

ADVANCING ANTARCTIC SEDIMENT CHRONOLOGY THROUGH COMBINED RAMPED PYROLYSIS OXIDATION AND PYROLYSIS-GC-MS

Published online by Cambridge University Press:  08 February 2024

Catherine E Ginnane*
Affiliation:
GNS Science, 1 Fairway Drive, Avalon 5011, PO Box 30368, Lower Hutt 5040, New Zealand
Jocelyn C Turnbull
Affiliation:
GNS Science, 1 Fairway Drive, Avalon 5011, PO Box 30368, Lower Hutt 5040, New Zealand CIRES, University of Colorado at Boulder, USA
Sebastian Naeher
Affiliation:
GNS Science, 1 Fairway Drive, Avalon 5011, PO Box 30368, Lower Hutt 5040, New Zealand
Brad E Rosenheim
Affiliation:
University of South Florida-College of Marine Science, St Petersburg, Florida 33701, USA
Ryan A Venturelli
Affiliation:
Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO USA 80401
Andy M Phillips
Affiliation:
GNS Science, 1 Fairway Drive, Avalon 5011, PO Box 30368, Lower Hutt 5040, New Zealand
Simon Reeve
Affiliation:
GNS Science, 1 Fairway Drive, Avalon 5011, PO Box 30368, Lower Hutt 5040, New Zealand
Jeremy Parry-Thompson
Affiliation:
GNS Science, 1 Fairway Drive, Avalon 5011, PO Box 30368, Lower Hutt 5040, New Zealand
Albert Zondervan
Affiliation:
GNS Science, 1 Fairway Drive, Avalon 5011, PO Box 30368, Lower Hutt 5040, New Zealand A.E. Lalonde AMS Laboratory, University of Ottawa, Canada
Richard H Levy
Affiliation:
GNS Science, 1 Fairway Drive, Avalon 5011, PO Box 30368, Lower Hutt 5040, New Zealand Antarctic Research Centre, Victoria University of Wellington, Te Herenga Waka, PO Box 600, Wellington 6140, New Zealand
Kyu-Cheul Yoo
Affiliation:
Korean Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gulnchean (21990), South Korea
Gavin Dunbar
Affiliation:
Antarctic Research Centre, Victoria University of Wellington, Te Herenga Waka, PO Box 600, Wellington 6140, New Zealand
Theo Calkin
Affiliation:
Antarctic Research Centre, Victoria University of Wellington, Te Herenga Waka, PO Box 600, Wellington 6140, New Zealand
Carlota Escutia
Affiliation:
Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR. Avda de las Palmeras 4, 18191 Armilla, Spain
Julia Gutierrez Pastor
Affiliation:
Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR. Avda de las Palmeras 4, 18191 Armilla, Spain
*
*Corresponding author. Email: c.ginnane@gns.cri.nz

Abstract

Radiocarbon (14C) dating of sediment deposition around Antarctica is often challenging due to heterogeneity in sources and ages of organic carbon in the sediment. Chemical and thermochemical techniques have been used to separate organic carbon when microfossils are not present. These techniques generally improve on bulk sediment dates, but they necessitate assumptions about the age spectra of specific molecules or compound classes and about the chemical heterogeneity of thermochemical separations. To address this, the Rafter Radiocarbon Laboratory has established parallel ramped pyrolysis oxidation (RPO) and ramped pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) systems to thermochemically separate distinct carbon fractions, diagnose the chemical composition of each fraction, and target suitable RPO fractions for radiocarbon dating. Three case studies of sediment taken from locations around Antarctica are presented to demonstrate the implementation of combined RPO-AMS and Py-GC-MS to provide more robust age determination in detrital sediment stratigraphy. These three depositional environments are good examples of analytical and interpretive challenges related to oceanographic conditions, carbon sources, and other factors. Using parallel RPO-AMS and Py-GC-MS analyses, we reduce the number of radiocarbon measurements required, minimize run times, provide context for unexpected 14C ages, and better support interpretations of radiocarbon measurements in the context of environmental reconstruction.

Type
Conference Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022

References

REFERENCES

Andrews, JT, Domack, EW, Cunningham, WL, Leventer, A, Licht, KJ, Jull, AJT, DeMaster, DJ, Jennings, AE. 1999. Problems and possible solutions concerning radiocarbon dating of surface marine sediments, Ross Sea, Antarctica. Quaternary Research 52(2):206216.CrossRefGoogle Scholar
Ashley, KE, McKay, R, Etourneau, J, Jimenez-Espejo, FJ, Condron, A, Albot, A, Crosta, X, Riesselman, C, Seki, O, Massé, G et al. 2021. Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat. Clim Past 17(1):119.CrossRefGoogle Scholar
Bao, R, McNichol, AP, Hemingway, JD, Lardie Gaylord, MC, Eglinton, TI. 2019. Influence of different acid treatments on the radiocarbon content spectrum of sedimentary organic matter determined by RPO/Accelerator Mass Spectrometry. Radiocarbon 61(2):395413.CrossRefGoogle Scholar
Berg, S, Jivcov, S, Kusch, S, Kuhn, G, Wacker, L, Rethemeyer, J. 2020. Compound-specific radiocarbon analysis of sub-Antarctic coastal marine sediments—potential and challenges for chronologies. Paleoceanography and Paleoclimatology 35(10):e2020PA003890.CrossRefGoogle Scholar
Bracegirdle, TJ, Colleoni, F, Abram, NJ, Bertler, NAN, Dixon, DA, England, M, Favier, V, Fogwill, CJ, Fyfe, JC, Goodwin, I et al. 2019. Back to the future: Using long-term observational and paleo-proxy reconstructions to improve model projections of Antarctic climate. Geosciences 9(6):255.CrossRefGoogle Scholar
Calkin, T. 2021. Sedimentology of the grounding zone of the Kamb Ice Stream, Siple Coast, West Antarctica [M.S. Thesis]. Victoria University of Wellington - Te Herenga Waka.Google Scholar
Carr, AS, Boom, A, Chase, BM, Roberts, DL, Roberts, ZE. 2010. Molecular fingerprinting of wetland organic matter using pyrolysis-GC/MS: an example from the Southern Cape coastline of South Africa. Journal of Paleolimnology 44(4):947961.CrossRefGoogle Scholar
Crosta, X, Crespin, J, Billy, I, Ther, O. 2005. Major factors controlling Holocene d13Corg changes in a seasonal sea-ice environment, Adélie Land, East Antarctica. Global Biogeochemical Cycles 19(4). doi:10.1029/2004GB002426.CrossRefGoogle Scholar
Crosta, X, Debret, M, Denis, D, Courty, MA, Ther, O. 2007. Holocene long- and short-term climate changes off Adélie Land, East Antarctica. Geochemistry, Geophysics, Geosystems 8(11). doi:10.1029/2007GC001718.CrossRefGoogle Scholar
Crosta, X, Denis, D, Ther, O. 2008. Sea ice seasonality during the Holocene, Adélie Land, East Antarctica. Marine Micropaleontology 66(3):222232.CrossRefGoogle Scholar
Cui, X, Mucci, A, Bianchi, TS, He, D, Vaughn, D, Williams, EK, Wang, C, Smeaton, C, Koziorowska-Makuch, K, Faust, JC et al. 2022. Global fjords as transitory reservoirs of labile organic carbon modulated by organo-mineral interactions. Science Advances 8(46):eadd0610.CrossRefGoogle ScholarPubMed
Denis, D, Crosta, X, Schmidt, S, Carson, DS, Ganeshram, RS, Renssen, H, Bout-Roumazeilles, V, Zaragosi, S, Martin, B, Cremer, M et al. 2009. Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica. Quaternary Science Reviews 28(13):12911303.CrossRefGoogle Scholar
Denis, D, Crosta, X, Zaragosi, S, Romero, O, Martin, B, Mas, V. 2006. Seasonal and subseasonal climate changes recorded in laminated diatom ooze sediments, Adélie Land, East Antarctica. The Holocene 16(8):11371147.CrossRefGoogle Scholar
Eglinton, TI, Aluwihare, LI, Bauer, JE, Druffel, ER, McNichol, AP. 1996. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Anal Chem 68(5):904912.CrossRefGoogle ScholarPubMed
Eglinton, TI, Benitez-Nelson, BC, Pearson, A, McNichol, AP, Bauer, JE, Druffel, ER. 1997. Variability in radiocarbon ages of individual organic compounds from marine sediments. Science 277(5327):796799.CrossRefGoogle Scholar
Escutia, C, Brinkhuis, H, Klaus, A. 2011. IODP expedition 318: From greenhouse to icehouse at the Wilkes Land Antarctic Margin. Scientific Drilling 12:1523.CrossRefGoogle Scholar
Expedition 318 Scientists. 2011. Site U1357. In: Escutia C, Brinkhuis H, Klaus A, and the Expedition 318 Scientists. Proc. IODP, 318: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). http://publications.iodp.org/proceedings/318/105/105_3.htm Google Scholar
Fabbri, D, Sangiorgi, F, Vassura, I. 2005. Pyrolysis–GC–MS to trace terrigenous organic matter in marine sediments: a comparison between pyrolytic and lipid markers in the Adriatic Sea. Analytica Chimica Acta 530(2):253261.CrossRefGoogle Scholar
Fernandez, A, Santos, GM, Williams, EK, Pendergraft, MA, Vetter, L, Rosenheim, BE. 2014. Blank corrections for ramped pyrolysis radiocarbon dating of sedimentary and soil organic carbon. Analytical Chemistry 86(24):1208512092.CrossRefGoogle ScholarPubMed
Grant, KE, Galy, VV, Chadwick, OA, Derry, LA. 2019. Thermal oxidation of carbon in organic matter rich volcanic soils: insights into SOC age differentiation and mineral stabilization. Biogeochemistry 144(3):291304.CrossRefGoogle Scholar
Hemingway, JD, Galy, VV, Gagnon, AR, Grant, KE, Rosengard, SZ, Soulet, G, Zigah, PK, McNichol, AP. 2017. Assessing the blank carbon contribution, isotope mass balance, and kinetic isotope fractionation of the ramped pyrolysis/oxidation instrument at NOSAMS. Radiocarbon 59(1):179193.CrossRefGoogle Scholar
Hemingway, JD, Rothman, DH, Grant, KE, Rosengard, SZ, Eglinton, TI, Derry, LA, Galy, VV. 2019. Mineral protection regulates long term global preservation of natural organic carbon. Nature 570:228.CrossRefGoogle ScholarPubMed
Johnson, KM, McKay, RM, Etourneau, J, Jiménez-Espejo, FJ, Albot, A, Riesselman, CR, Bertler, NAN, Horgan, HJ, Crosta, X, Bendle, J et al. 2021. Sensitivity of Holocene East Antarctic productivity to subdecadal variability set by sea ice. Nature Geoscience 14(10):762768.CrossRefGoogle Scholar
Kingslake, J, Scherer, RP, Albrecht, T, Coenen, J, Powell, RD, Reese, R, Stansell, ND, Tulaczyk, S, Wearing, MG, Whitehouse, PL. 2018. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene. Nature 558(7710):430434.CrossRefGoogle ScholarPubMed
Lawrence, JD, Washam, PM, Stevens, C, Hulbe, C, Horgan, HJ, Dunbar, G, Calkin, T, Stewart, C, Robinson, N, Mullen, AD et al. 2023. Crevasse refreezing and signatures of retreat observed at Kamb Ice Stream grounding zone. Nature Geoscience 16(3):238243.CrossRefGoogle ScholarPubMed
Lee, MK. 2017. Reconstruction of Antarctic Ice Sheet and ocean history for the past two million years. Korea Polar Research Institute. Annual Report, 12–13.Google Scholar
Leventer, A, Domack, E, Dunbar, R, Pike, J, Stickley, C, Maddison, E, Brachfeld, S, Manley, P, McClennen, C. 2006. Marine sediment record from East Antarctica margin reveals dynamics of ice-sheet recession. GSA Today 16(12).CrossRefGoogle Scholar
Mackintosh, A, Golledge, N, Domack, E, Dunbar, R, Leventer, A, White, D, Pollard, D, DeConto, R, Fink, D, Zwartz, D et al. 2011. Retreat of the East Antarctic ice sheet during the last glacial termination. Nature Geoscience 4(3):195202.CrossRefGoogle Scholar
Mannino, A, Harvey, HR. 2000. Terrigenous dissolved organic matter along an estuarine gradient and its flux to the coastal ocean. Organic Geochemistry 31(12):16111625.CrossRefGoogle Scholar
McGeehin, J, Burr, GS, Jull, AJT, Reines, D, Gosse, J, Davis, PT, Muhs, D, Southon, JR. 2001. Stepped-combustion 14C dating of sediment: A comparison with established techniques. Radiocarbon 43(2A):255261.CrossRefGoogle Scholar
McKay, R, Golledge, NR, Maas, S, Naish, T, Levy, R, Dunbar, G, Kuhn, G. 2016. Antarctic marine ice-sheet retreat in the Ross Sea during the early Holocene. Geology 44(1):710.CrossRefGoogle Scholar
Moldoveanu, SC. 2021. Analytical Pyrolysis of Natural Organic Polymers (Second Edition). Elsevier.Google Scholar
Mollenhauer, G, Kienast, M, Lamy, F, Meggers, H, Schneider, RR, Hayes, JM, Eglinton, TI. 2005. An evaluation of 14C age relationships between co-occurring foraminifera, alkenones, and total organic carbon in continental margin sediments. Paleoceanography 20(1). doi:10.1029/2004PA001103.CrossRefGoogle Scholar
Mollenhauer, G, Rethemeyer, J. 2009. Compound-specific radiocarbon analysis – analytical challenges and applications. IOP Conference Series: Earth and Environmental Science 5:012006.Google Scholar
Naeher, S, Cui, X, Summons, RE. 2022. Biomarkers: Molecular tools to study life, environment, and climate. Elements 18(2):7985.CrossRefGoogle Scholar
Naeher, S, Hollis, CJ, Clowes, CD, Ventura, GT, Shepherd, CL, Crouch, EM, Morgans, HEG, Bland, KJ, Strogen, DP, Sykes, R. 2019. Depositional and organofacies influences on the petroleum potential of an unusual marine source rock: Waipawa Formation (Paleocene) in southern East Coast Basin, New Zealand. Marine and Petroleum Geology 104:468488.CrossRefGoogle Scholar
Naeher, S, Schaeffer, P, Adam, P, Schubert, CJ. 2013. Maleimides in recent sediments – using chlorophyll degradation products for palaeoenvironmental reconstructions. Geochimica et Cosmochimica Acta 119:248263.CrossRefGoogle Scholar
Naeher, S, Suga, H, Ogawa, NO, Takano, Y, Schubert, CJ, Grice, K, Ohkouchi, N. 2016. Distributions and compound-specific isotopic signatures of sedimentary chlorins reflect the composition of photoautotrophic communities and their carbon and nitrogen sources in Swiss lakes and the Black Sea. Chemical Geology 443:198209.CrossRefGoogle Scholar
Norris, MW, Turnbull, JC, Howarth, JD, Vandergoes, MJ. 2020. Pretreatment of terrestrial macrofossils. Radiocarbon 62(2):349360.CrossRefGoogle Scholar
O’Connor, JA, Lu, K, Guo, L, Rosenheim, BE, Liu, Z. 2020. Composition and lability of riverine dissolved organic matter: Insights from thermal slicing ramped pyrolysis GC–MS, amino acid, and stable isotope analyses. Organic Geochemistry 149:104100.CrossRefGoogle Scholar
Ohkouchi, N, Eglinton, TI. 2006. Radiocarbon constraint on relict organic carbon contributions to Ross Sea sediments. Geochemistry, Geophysics, Geosystems 7(4). doi:10.1029/2005GC001097.CrossRefGoogle Scholar
Ohkouchi, N, Eglinton, TI. 2008. Compound-specific radiocarbon dating of Ross Sea sediments: A prospect for constructing chronologies in high-latitude oceanic sediments. Quaternary Geochronology 3(3):235243.CrossRefGoogle Scholar
Ohkouchi, N, Eglinton, TI, Hayes, JM. 2003. Radiocarbon dating of individual fatty acids as a tool for refining Antarctic margin sediment chronologies. Radiocarbon 45(1):1724.CrossRefGoogle Scholar
Ohkouchi, N, Xu, L, Reddy, CM, Montluçon, D, Eglinton, TI. 2005. Radiocarbon dating of alkenones from marine sediments: I. Isolation protocol. Radiocarbon 47(3):401412.CrossRefGoogle Scholar
Pendergraft, MA, Dincer, Z, Sericano, JL, Wade, TL, Kolasinski, J, Rosenheim, BE. 2013. Linking ramped pyrolysis isotope data to oil content through PAH analysis. Environmental Research Letters 8(4):110.CrossRefGoogle Scholar
Pendergraft, MA, Rosenheim, BE. 2014. Varying relative degradation rates of oil in different forms and environments revealed by ramped pyrolysis. Environmental Science & Technology 48(18):1096610974.CrossRefGoogle ScholarPubMed
Plante, AF, Beaupré, SR, Roberts, ML, Baisden, T. 2013. Distribution of radiocarbon ages in soil organic matter by thermal fractionation. Radiocarbon 55(2–3):1077–1083.CrossRefGoogle Scholar
Pouwels, AD, Tom, A, Eijkel, GB, Boon, JJ. 1987. Characterisation of beech wood and its holocellulose and xylan fractions by pyrolysis-gas chromatography-mass spectrometry. Journal of Analytical and Applied Pyrolysis 11:417436.CrossRefGoogle Scholar
Pulchan, KJ, Helleur, R, Abrajano, TA. 2003. TMAH thermochemolysis characterization of marine sedimentary organic matter in a Newfoundland fjord. Organic Geochemistry 34(2):305317.CrossRefGoogle Scholar
Ralph, J, Hatfield, RD. 1991. Pyrolysis-GC-MS characterization of forage materials. Journal of Agricultural and Food Chemistry 39(8):14261437.CrossRefGoogle Scholar
Rogers, KL, Bosman, SH, Lardie-Gaylord, M, McNichol, A, Rosenheim, BE, Montoya, JP, Chanton, JP. 2019. Petrocarbon evolution: Ramped pyrolysis/oxidation and isotopic studies of contaminated oil sediments from the Deepwater Horizon oil spill in the Gulf of Mexico. PLoS One 14(2):e0212433.CrossRefGoogle ScholarPubMed
Roseby, ZA, Smith, JA, Hillenbrand, C-D, Cartigny, MJB, Rosenheim, BE, Hogan, KA, Allen, CS, Leventer, A, Kuhn, G, Ehrmann, W et al. 2022. History of Anvers-Hugo Trough, western Antarctic Peninsula shelf, since the Last Glacial Maximum. Part I: Deglacial history based on new sedimentological and chronological data. Quaternary Science Reviews 291:107590.CrossRefGoogle Scholar
Rosenheim, BE, Day, MB, Domack, E, Schrum, H, Benthien, A, Hayes, JM. 2008. Antarctic sediment chronology by programmed-temperature pyrolysis: Methodology and data treatment. Geochemistry, Geophysics, Geosystems 9(4). doi:10.1029/2007GC001816.CrossRefGoogle Scholar
Rosenheim, BE, Galy, V. 2012. Direct measurement of riverine particulate organic carbon age structure. Geophysical Research Letters 39(19). doi:10.1029/2012GL052883.CrossRefGoogle Scholar
Rosenheim, BE, Roe, KM, Roberts, BJ, Kolker, AS, Allison, MA, Johannesson, KH. 2013a. River discharge influences on particulate organic carbon age structure in the Mississippi/Atchafalaya River System. Global Biogeochemical Cycles 27(1):154166.CrossRefGoogle Scholar
Rosenheim, BE, Santoro, JA, Gunter, M, Domack, EW. 2013b. Improving Antarctic sediment 14C dating using ramped pyrolysis: an example from the Hugo Island Trough. Radiocarbon 55(1):115126.CrossRefGoogle Scholar
Saiz-Jimenez, C. 1995. The origin of alkylbenzenes and thiophenes in pyrolysates of geochemical samples. Organic Geochemistry 23(1):8185.CrossRefGoogle Scholar
Saiz-Jimenez, C, De Leeuw, JW. 1986. Lignin pyrolysis products: Their structures and their significance as biomarkers. Organic Geochemistry 10(4):869876.CrossRefGoogle Scholar
Sanderman, J, Grandy, AS. 2020. Ramped thermal analysis for isolating biologically meaningful soil organic matter fractions with distinct residence times. SOIL 6(1):131144.CrossRefGoogle Scholar
Santos, GM, Southon, JR, Griffin, S, Beaupre, SR, Druffel, ERM. 2007. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259(1):293302.CrossRefGoogle Scholar
Scott, E. 2003. Section 3: Preliminary analysis of the results. Radiocarbon 45(2):159174.Google Scholar
Seeley, ME, Wang, Q, Bacosa, H, Rosenheim, BE, Liu, Z. 2018. Environmental petroleum pollution analysis using ramped pyrolysis-gas chromatography–mass spectrometry. Organic Geochemistry 124:180189.CrossRefGoogle Scholar
Smith, JA, Hillenbrand, C-D, Subt, C, Rosenheim, BE, Frederichs, T, Ehrmann, W, Andersen, TJ, Wacker, L, Makinson, K, Anker, P et al. 2021. History of the Larsen C Ice Shelf reconstructed from sub–ice shelf and offshore sediments. Geology 49(8):978982.CrossRefGoogle Scholar
Soclo, HH, Garrigues, P, Ewald, M. 2000. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin 40(5):387396.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Subt, C, Fangman, KA, Wellner, JS, Rosenheim, BE. 2016. Sediment chronology in Antarctic deglacial sediments: reconciling organic carbon 14C ages to carbonate 14C ages using Ramped PyrOx. The Holocene 26(2):265273.CrossRefGoogle Scholar
Subt, C, Yoon, HI, Yoo, KC, Lee, JI, Leventer, A, Domack, EW, Rosenheim, BE. 2017. Sub-ice shelf sediment geochronology utilizing novel radiocarbon methodology for highly detrital sediments. Geochemistry, Geophysics, Geosystems 18(4):14041418.CrossRefGoogle Scholar
Suzuki, K, Yamamoto, M, Rosenheim, BE, Omori, T, Polyak, L. 2021. New radiocarbon estimation method for carbonate-poor sediments: A case study of ramped pyrolysis 14C dating of postglacial deposits from the Alaskan margin, Arctic Ocean. Quaternary Geochronology 66:101215.CrossRefGoogle Scholar
Terán, A, Gonzalez-Vila, F, Gonzalez-Perez, J. 2009. Detection of organic contamination in sediments by double-shoot pyrolysis–GC/MS. Environmental Chemistry Letters 7(4):301308.CrossRefGoogle Scholar
Truax, OJ. 2023. Holocene paleoceanography of the western Ross Sea, Antarctica [Ph.D. thesis]. University of Otago, New Zealand.Google Scholar
Turnbull, JC, Zondervan, A, Kaiser, J, Norris, M, Dahl, J, Baisden, T, Lehman, S. 2015. High-precision atmospheric 14CO2 measurement at the Rafter Radiocarbon Laboratory. Radiocarbon 57(3):377388.CrossRefGoogle Scholar
Van Bergen, P, Bland, H, Horton, M, Evershed, R. 1997. Chemical and morphological changes in archaeological seeds and fruits during preservation by desiccation. Geochimica et Cosmochimica Acta 61(9):19191930.CrossRefGoogle Scholar
van Bergen, PF, Poole, I. 2002. Stable carbon isotopes of wood: a clue to palaeoclimate? Palaeogeography, Palaeoclimatology, Palaeoecology 182(1–2):3145.CrossRefGoogle Scholar
Venturelli, RA. 2021. Investigating the recent history of a changing planet with innovative isotopic techniques and new geologic archives [Ph.D. thesis]. University of South Florida.Google Scholar
Venturelli, RA, Boehman, B, Davis, C, Hawkings, JR, Johnston, SE, Gustafson, CD, Michaud, AB, Mosbeux, C, Siegfried, MR, Vick-Majors, TJ, Galy, V, Spencer, RGM, Warny, S, Christner, BC, Fricker, HA, Harwood, DM, Leventer, A, Priscu, JC, Rosenheim, BE. 2023. Constraints on the timing and extent of deglacial grounding line retreat in West Antarctica. AGU Advances 4(2):e2022AV000846. doi:10.1029/2022AV000846.CrossRefGoogle Scholar
Venturelli, RA, Siegfried, MR, Roush, KA, Li, W, Burnett, J, Zook, R, Fricker, HA, Priscu, JC, Leventer, A, Rosenheim, BE. 2020. Mid-Holocene grounding line retreat and readvance at Whillans Ice Stream, West Antarctica. Geophysical Research Letters 47(15):e2020GL088476. doi:10.1029/2020GL088476.CrossRefGoogle Scholar
Williams, EK, Rosenheim, BE, McNichol, AP, Masiello, CA. 2014. Charring and non-additive chemical reactions during ramped pyrolysis: Applications to the characterization of sedimentary and soil organic material. Organic Geochemistry 77:106114.CrossRefGoogle Scholar
Yamane, M, Yokoyama, Y, Miyairi, Y, Suga, H, Matsuzaki, H, Dunbar, RB, Ohkouchi, N. 2014. Compound-specific 14C dating of IODP Expedition 318 Core U1357A obtained off the Wilkes Land Coast, Antarctica. Radiocarbon 56(3):10091017.CrossRefGoogle Scholar
Zhang, X, Bianchi, TS, Cui, X, Rosenheim, BE, Ping, C-L, Hanna, AJM, Kanevskiy, M, Schreiner, KM, Allison, MA. 2017. Permafrost organic carbon mobilization from the watershed to the Colville River Delta: evidence from 14C ramped pyrolysis and lignin biomarkers. Geophysical Research Letters 44(22):11491114500.CrossRefGoogle Scholar
Zhang, Z, Volkman, JK, Xie, X, Snowdon, LR. 2016. Stepwise pyrolysis of the kerogen from the Huadian oil shale, NE China: Algaenan-derived hydrocarbons and mid-chain ketones. Organic Geochemistry 91:8999.CrossRefGoogle Scholar
Zondervan, A, Hauser, T, Kaiser, J, Kitchen, R, Turnbull, J, West, J. 2015. XCAMS: The compact 14C accelerator mass spectrometer extended for 10Be and 26Al at GNS Science, New Zealand. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361:2533.CrossRefGoogle Scholar
Supplementary material: File

Ginnane et al. supplementary material

Ginnane et al. supplementary material
Download Ginnane et al. supplementary material(File)
File 1.4 MB