Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T10:12:02.600Z Has data issue: false hasContentIssue false

14C Sources and Distribution in the Vicinity of La Hague Nuclear Reprocessing Plant: Part Ii—Marine Environment

Published online by Cambridge University Press:  18 July 2016

D Maro*
Affiliation:
Laboratoire de Radioécologie de Cherbourg-Octeville (IRSN/DEI/SECRE/LRC), F-50130 Cherbourg-Octeville, France
M Fontugne*
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572-CEA/CNRS, Domaine du CNRS, F-91198-Gif sur Yvette cedex, France
C Hatté
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572-CEA/CNRS, Domaine du CNRS, F-91198-Gif sur Yvette cedex, France
D Hebert
Affiliation:
Laboratoire de Radioécologie de Cherbourg-Octeville (IRSN/DEI/SECRE/LRC), F-50130 Cherbourg-Octeville, France
M Rozet
Affiliation:
Laboratoire de Radioécologie de Cherbourg-Octeville (IRSN/DEI/SECRE/LRC), F-50130 Cherbourg-Octeville, France
*
Corresponding author. Email: Michel.Fontugne@lsce.cnrs-gif.fr.
Corresponding author. Email: Michel.Fontugne@lsce.cnrs-gif.fr.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Carbon dioxide partial pressure and radiocarbon activity were measured in air and seawater in the Bay of Seine and around the COGEMA-La Hague nuclear reprocessing plant (northwest France) during 3 cruises in 2000 and 2002. Results clearly show that the sea is a source of CO2 and 14C to the atmosphere. High 14C concentrations in air and water related to the La Hague liquid waste are clearly recorded. For the restricted area of the Bay of Seine, CO2 carbon and 14C fluxes were estimated, indicating that less than 3% of the liquid 14C release is introduced in the atmosphere.

Type
Part II
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Abril, G. 1999. Dynamique du carbone dans les estuaires européens: processus de minéralisation et transfert continent-océan-atmosphère [PhD dissertation]. Université de Bordeaux I. p 173209.Google Scholar
Bard, E, Arnold, M, Ostlund, HG, Maurice, P, Monfray, P, Duplessy, JC. 1988. Penetration of bomb radiocarbon in the tropical Indian Ocean measured by means of accelerator mass spectrometry. Earth and Planetary Sciences Letters 87:379–89.Google Scholar
Boehme, SE, Sabine, CL, Reimers, CE. 1998. CO2 fluxes from a coastal transect: a time-series approach. Marine Chemistry 63:4967.Google Scholar
COGEMA. 2000. Surveillance trimestrielle de l'environnement de la Hague. Rapport Hag. 055000120013. 84 p.Google Scholar
Copin-Montégut, G. 1996. Chimie de l'eau de mer. Paris: Institut Océanographique. 319 p.Google Scholar
Department of Energy (DOE). Dickson, A G, Goyet, C, editors. 1994. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Seawater. Version 2. ORNL/CDIAC-74.Google Scholar
Fontugne, M, Maro, D, Baron, Y, Hatté, C, Hébert, D, Douville, E. Sources and distribution of radiocarbon in the vicinity of La Hague nuclear reprocessing plant: part I—terrestrial environment. Radiocarbon, these proceedings.Google Scholar
Frankignoulle, M, Borges, AV. 2001. European continental shelf as a significant sink for atmospheric carbon dioxide. Global Biogeochemical Cycles 15(3):569–76.Google Scholar
Keir, RS, Rehder, G, Frankignoulle, M. 2001. Partial pressure and air-sea flux of CO2 in the Northeast Atlantic during September 1995. Deep Sea Research Part II: Topical Studies in Oceanography 48(14–15):3179–89.Google Scholar
Leboucher, V, Orr, J, Jean-Baptiste, P, Arnold, M, Monfray, P, Tisnerat-Laborde, N, Poisson, A, Duplessy, JC. 1999. Oceanic radiocarbon between Antarctica and South Africa along WOCE section I6 at 30$dGE. Radiocarbon 41(1):5173.Google Scholar
Liss, PS, Merlivat, L. 1986. Air-sea exchange rates: introduction and synthesis. In: Buat-Ménard, P, editor. The Role of Air-Sea Exchange in Geochemical Cycling. Hingham, Massachusetts: D Riedel Publishing Co. p 113–27.Google Scholar
Maro, D, Crabol, B, Germain, P, Baron, Y, Hebert, D, Bouisset, P. 2002. A study of the near field atmospheric dispersion of emission at height: Comparison of Gaussian plume models (Doury, Pasquill-Briggs, Caire) with krypton-85 measurements taken around La Hague nuclear reprocessing plant. Radioprotection 37(C1):1277–82.Google Scholar
Savoye, N, Aminot, A, Tréguer, P, Fontugne, M, Naulet, N, Kérouel, R. 2003. Dynamics of particulate organic matter δ15N and δ13C during spring phytoplankton blooms in a microtidal ecosystem (Bay of Seine, France). Marine Ecology Progress Series 255:2741.Google Scholar
Tans, PP, Fung, IY, Takahashi, T. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247:1431–38.Google Scholar
Wanninkhof, R, McGillis, WR. 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Geophysical Research Letters 26(13):1889–92.Google Scholar