Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T13:17:08.765Z Has data issue: false hasContentIssue false

14C MEASUREMENT OF SAMPLES FOR ENVIRONMENTAL SCIENCE APPLICATIONS AT THE NATIONAL ENVIRONMENTAL ISOTOPE FACILITY (NEIF) RADIOCARBON LABORATORY, SUERC, UK

Published online by Cambridge University Press:  14 February 2024

P Ascough*
Affiliation:
NEIF Radiocarbon Laboratory, Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, G75 0QF, UK
N Bompard
Affiliation:
NEIF Radiocarbon Laboratory, Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, G75 0QF, UK
M H Garnett
Affiliation:
NEIF Radiocarbon Laboratory, Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, G75 0QF, UK
P Gulliver
Affiliation:
NEIF Radiocarbon Laboratory, Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, G75 0QF, UK
C Murray
Affiliation:
NEIF Radiocarbon Laboratory, Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, G75 0QF, UK
J-A Newton
Affiliation:
NEIF Radiocarbon Laboratory, Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, G75 0QF, UK
C Taylor
Affiliation:
NEIF Radiocarbon Laboratory, Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, G75 0QF, UK
*
*Corresponding author. Email: philippa.ascough@glasgow.ac.uk

Abstract

The National Environmental Isotope Facility (NEIF) Radiocarbon Laboratory at the Scottish Universities Environmental Research Centre (SUERC) performs radiocarbon measurement of a wide range of sample matrices for applications in environmental research. Radiocarbon is applied to palaeoenvironmental, palaeoceanographic, and palaeoclimatic investigations, as well as work to understand the source, fate, turnover, and age of carbon in the modern carbon cycle. The NEIF Radiocarbon Laboratory supports users in the development and deployment of novel sampling techniques and laboratory approaches. Here, we give an overview of methods and procedures used by the laboratory to support the field collection, laboratory processing, and measurement of samples. This includes in-house development of novel and/or specialized methods and approaches, such as field collection of CO2 and CH4, hydropyrolysis, and ramped oxidation. The sample types covered include organic remains (e.g., plant material, peat, wood, charcoal, proteins), carbonates (e.g., speleothems, foraminifera, mollusc shell, travertine), waters (dissolved organic and inorganic carbon), gases (CO2 and CH4), soils and sediments (including sub-fractions).

Type
Conference Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022.

References

REFERENCES

Ascough, PL, Bird, MI, Brock, F, Higham, TFG, Meredith, W, Snape, C, Vane, CH. 2009. Hydropyrolysis as a new tool for radiocarbon pretreatment and the quantification of black carbon. Quaternary Geochronology 4(2):140147. doi: 10.1016/j.quageo.2008.11.001 CrossRefGoogle Scholar
Ascough, PL, Bird, MI, Meredith, W, Wood, RE, Snape, CE, Brock, F, Higham, TFG, Large, DJ, Apperley, DC. 2010. Hydropyrolysis: implications for radiocarbon pretreatment and characterization of Black Carbon. Radiocarbon 52(3):13361350. doi: 10.1017/S0033822200046427 CrossRefGoogle Scholar
Bird, MI, Ascough, PL. 2012. Isotopes in pyrogenic carbon: a review. Organic Geochemistry 42:15291539. doi: 10.1016/j.orggeochem.2010.09.005 CrossRefGoogle Scholar
Boaretto, E, Bryant, C, Carmi, I, Cook, G, Gulliksen, S, Harkness, D, Heinemeier, J, McClure, J, McGee, E, Naysmith, P, Possnert, G, Scott, M, van der Plicht, H, van Strydonck, M. 2002. Summary findings of the fourth international radiocarbon intercomparison (FIRI) (1998–2001). Journal of Quaternary Science 17:633637. https://doi.org/10.1002/jqs.702 CrossRefGoogle Scholar
Bryant, CL, Henley, SF, Murray, C, Ganeshram, RS, Shanks, R. 2013. Storage and hydrolysis of seawater samples for inorganic carbon isotope analysis. Radiocarbon 55:401409. doi: 10.1017/S0033822200057520 CrossRefGoogle Scholar
Dean, JF, Billett, MF, Murray, C, Garnett, MH. 2017. Ancient dissolved methane in inland waters revealed by a new collection method at low field concentrations for radiocarbon (14C) analysis. Water Research 115:236244. doi: 10.1016/j.watres.2017.03.009 CrossRefGoogle ScholarPubMed
Donahue, DJ, Jull, AJT, Toolin, LJ. 1990. Radiocarbon measurements at the University of Arizona AMS facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 52(3):224228. https://doi.org/10.1016/0168-583X(90)90410-V CrossRefGoogle Scholar
Dunbar, E, Cook, GT, Naysmith, P, Tripney, BG, Xu, S. 2016. AMS 14C Dating at the Scottish Universities Environmental Research Centre (SUERC) Radiocarbon Dating Laboratory. Radiocarbon 58:923. doi: 10.1017/RDC.2015.2 CrossRefGoogle Scholar
Freeman, S, Bishop, P, Bryant, C, Cook, G, Fallick, A, Harkness, D, Metcalfe, S, Scott, M, Scott, R and Summerfield, M. 2004. A new environmental sciences AMS laboratory in Scotland. Nuclear Instruments and Methods in Physics Research B 223–224:3134. https://doi.org/10.1016/j.nimb.2004.04.010 CrossRefGoogle Scholar
Freeman, SPHT, Cook, GT, Dougans, AB, Naysmith, P, Wilcken, KM, Xu, S. 2010. Improved SSAMS performance. Nuclear Instruments and Methods in Physics Research B 268:715717. doi: 10.1016/j.nimb.2009.10.012 CrossRefGoogle Scholar
Gao, P, Xu, X, Zhou, L, Pack, MA, Griffin, S, Santos, GM, Southon, JR, Liu, K. 2014. Rapid sample preparation of dissolved inorganic carbon in natural waters using a headspace-extraction approach for radiocarbon analysis by accelerator mass spectrometry. Limnology and Oceanography: Methods 12:174190. doi: 10.4319/lom.2014.12.174 Google Scholar
Garnett, MH, Dinsmore, KJ, Billett, MF. 2012. Annual variability in the radiocarbon age and source of dissolved CO2 in a peatland stream. Science of the Total Environment 427:277285. doi: 10.1016/j.scitotenv.2012.03.087 CrossRefGoogle Scholar
Garnett, MH, Hartley, IP. 2010). A passive sampling method for radiocarbon analysis of atmospheric CO2 using molecular sieve. Atmospheric Environment 44:877883. doi: 10.1016/j.atmosenv.2009.12.005 CrossRefGoogle Scholar
Garnett, MH, Hartley, IP, Hopkins, DW, Sommerkorn, M, Wookey, PA. 2009. A passive sampling method for radiocarbon analysis of soil respiration using molecular sieve. Soil Biology & Biochemistry 41:14501456. doi: 10.1016/j.soilbio.2009.03.024 CrossRefGoogle Scholar
Garnett, MH, Newton, J-A, Ascough, PL. 2019a. Advances in the radiocarbon analysis of carbon dioxide at the NERC Radiocarbon Facility (East Kilbride) using molecular sieve cartridges. Radiocarbon 61:18551865. doi: 10.1017/RDC.2019.86 CrossRefGoogle Scholar
Garnett, MH, Newton, J-A, Parker, TC. 2021. A highly portable and inexpensive field sampling kit for radiocarbon analysis of carbon dioxide. Radiocarbon 63:13551368. doi: 10.1017/RDC.2021.49 CrossRefGoogle Scholar
Garnett, M, Murray, C, Gulliver, P, Ascough, P. 2019b. Radiocarbon analysis of methane at the NERC Radiocarbon Facility (East Kilbride). Radiocarbon 61:14771487. doi: 10.1017/RDC.2019.3 CrossRefGoogle Scholar
Garnett, MH, Gulliver, P, Billett, MF. 2016. A rapid method to collect methane from peatland streams for radiocarbon analysis. Ecohydrology 9:113121. doi: 10.1002/eco.1617 CrossRefGoogle Scholar
Garnett, MH, Hardie, SML, Murray, C. 2011. Radiocarbon and stable carbon analysis of dissolved methane and carbon dioxide from the profile of a raised peat bog. Radiocarbon 53:7183. doi: 10.1017/S0033822200034366 CrossRefGoogle Scholar
Gulliksen, S, Scott, M. 1995. Report of the TIRI workshop, Saturday 13 August, 1994. Radiocarbon 37:820821. doi: 10.1017/S0033822200031404 CrossRefGoogle Scholar
Gulliver, P, Waldron, S, Scott, EM, Bryant, CL. 2010. The effect of storage on the radiocarbon, stable carbon and nitrogen isotopic signatures and concentrations of riverine DOM. Radiocarbon 52:11131122. doi: 10.1017/S0033822200046191 CrossRefGoogle Scholar
McKinney, CR, McCrea, JM, Epstein, S, Allen, HA, Urey, HC. 1950. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. The Review of Scientific Instruments 21(8):724730. doi: 10.1063/1.1745698 CrossRefGoogle ScholarPubMed
Meredith, W, Ascough, PL, Bird, M I, Large, DJ, Snape, CE, Sun, Y, Tilston, EL. 2012. Assessment of hydropyrolysis as a method for the quantification of black carbon using standard reference materials. Geochimica et Cosmochimica Acta 97:131147. doi: 10.1016/j.gca.2012.08.037 CrossRefGoogle Scholar
Rosenheim, BE, Day, MB, Domack, E, Schrum, H, Benthien, A, Hayes, JM. 2008. Antarctic sediment chronology by programmed-temperature pyrolysis: Methodology and data treatment. Geochemistry, Geophysics, Geosystems 9(4):Q04005. https://doi.org/10.1029/2007GC001816 CrossRefGoogle Scholar
Santos, GM, Southon, JR, Griffin, S, Beaupre, SR, Druffel, ERM. 2007. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI Facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 259(1):293302. doi: 10.1016/j.nimb.2007.01.172 CrossRefGoogle Scholar
Scott, E, Cook, G, Naysmith, P. 2010. The Fifth International Radiocarbon Intercomparison (VIRI): an assessment of laboratory performance in Stage 3. Radiocarbon 52(3):859865. doi: 10.1017/S003382220004594X CrossRefGoogle Scholar
Slota, P, Jull, AJT, Linick, T, Toolin, LJ. 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2):303306. doi: 10.1017/S0033822200056988 CrossRefGoogle Scholar
Southon, J, Santos, G, Druffel-Rodriguez, K, Druffel, E, Trumbore, S, Xu, X, Griffin, S, Ali, S, Mazon, M. 2004. The Keck Carbon Cycle AMS Laboratory, University of California, Irvine: initial operation and a background surprise. Radiocarbon 46:4149. doi: 10.1017/S0033822200039333 CrossRefGoogle Scholar
Switsur, VR. 1972. Combustion bombs for radiocarbon dating. 8th international conference on radiocarbon dating, Proceedings, Lower Hutt, New Zealand, v 1:B11–B23.Google Scholar
Vandeputte, K, Moens, L, Dams, R. 1996. Improved sealed-tube combustion of organic samples to CO2 for stable isotopic analysis, radiocarbon dating and percent carbon determinations. Analytical Letters 29 (15):27612773. doi: 10.1080/00032719608002279 CrossRefGoogle Scholar
Xu, S, Anderson, R, Bryant, C, Cook, G, Dougans, A, Freeman, S, Naysmith, P, Schnabel, C, Scott, E. 2004. Capabilities of the New SUERC 5MV AMS Facility for 14C Dating. Radiocarbon 46(1):5964. doi: 10.1017/S0033822200039357 CrossRefGoogle Scholar