Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-13T11:31:43.665Z Has data issue: false hasContentIssue false

Testing lake-level reconstructions based on rock magnetic proxies for the sediment record of Laguna Cháltel (Patagonia, Argentina)

Published online by Cambridge University Press:  06 April 2020

María A. Irurzun*
Affiliation:
Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)–Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA)–Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC)), Tandil, Argentina
Pedro Palermo
Affiliation:
Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)–Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA)–Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC)), Tandil, Argentina
Claudia S. G. Gogorza
Affiliation:
Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)–Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA)–Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC)), Tandil, Argentina
Ana M. Sinito
Affiliation:
Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN)–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)–Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA)–Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC)), Tandil, Argentina
Milagrosa Aldana
Affiliation:
Departamento de Ciencias de la Tierra, Universidad Simon Bolívar, Caracas, Venezuela
Vincenzo Costanzo-Álvarez
Affiliation:
Departamento de Ciencias de la Tierra, Universidad Simon Bolívar, Caracas, Venezuela Facultad de Ingeniería en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral ESPOL, Guayaquil, Ecuador
Christian Ohlendorf
Affiliation:
Institute of Geography, University of Bremen, Geomorphologie und Polarforschung (GEOPOLAR), Germany
Bernd Zolitschka
Affiliation:
Institute of Geography, University of Bremen, Geomorphologie und Polarforschung (GEOPOLAR), Germany
*
*Corresponding author e-mail: airurzun@exa.unicen.edu.ar (M.A. Irurzun).

Abstract

This study was carried out on sediment cores collected with a gravity corer from Laguna Cháltel, an almost circular crater lake located in Patagonia, Argentina (49.9°S, 71°W). The main magnetic carrier was Ti-magnetite in the pseudo–single domain range. A model using magnetic grain size and concentration, previously applied to Laguna Potrok Aike to infer lake-level changes, was used for Laguna Cháltel. The main requirement to apply the model is uniform magnetic mineralogy, which is the case for Laguna Cháltel. After magnetic data were compared with previously studied lake levels, it was found that the magnetic proxies that best follow hydrologic changes are ARM/SIRM (anhysteretic remanent magnetisation/saturation of isothermal remanent magnetisation) and ARM. The concentration proxy (ARM measured with a 100 mT alternating field and 0.05 mT direct field) was also used as wind indicator. High wind strength was found at around 3650 cal yr BP, and low wind strength for the last century. ARM/SIRM and ARM were used to infer the strength of fluvial runoff into the lake for a core collected close to the shore and near a tributary. The results show that the magnetic model is promising for inferring lake-level variations, particularly in Patagonian lakes.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achaga, R.V., Irurzun, M.A., Gogorza, C.S.G., Goguitchaichvili, A., Morales, J., Loponte, D., Sinito, A.M., 2017. Paleomagnetic and paleoclimatic investigation at Laguna Melincue (Pampean Plains, Argentina): preliminary results. Studia Geophysica et Geodaetica 61, 318335.CrossRefGoogle Scholar
Aldana, M., Costanzo-Álvarez, V., Gómez, L., González, C., Díaz, M., Silva, P., Rada, M., 2011. Identification of magnetic minerals related to hydrocarbon authigenesis in Venezuelan oil fields using an alternative decomposition of isothermal remanence curves. Studia Geophysica et Geodaetica 55, 343358.CrossRefGoogle Scholar
Aldana, M., Laredo, E., Bello, A., Suárez, N., 1994. Direct signal analysis applied to the determination of the relaxation parameters from TSDC spectra of polymers. Journal of Polymer Science: Polymer Physics 32, 21972206.Google Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., 2001. The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.CrossRefGoogle ScholarPubMed
Björck, S., Rundgren, M., Ljung, K., Unkel, I., Wallin, Å., 2012. Multi-proxy analyses of a peat bog on Isla de los Estados, easternmost Tierra del Fuego: a unique record of the variable Southern Hemisphere Westerlies since the last deglaciation. Quaternary Science Reviews 42, 114.CrossRefGoogle Scholar
Corbella, H., Lara, L.E., 2008. Late Cenozoic Quaternary volcanism in Patagonia and Tierra del Fuego. In: Rabassa, J. (Ed.), The Late Cenozoic of Patagonia and Tierra del Fuego. Elsevier, Amsterdam, pp. 95119.CrossRefGoogle Scholar
Costanzo-Álvarez, V., Aldana, M., Bayona, G., López-Rodriguez, D., Blanco, J.M., 2012. Rock magnetic characterization of early and late diagenesis in a stratigraphic well from the Llanos Foreland basin (Eastern Colombia). In: Elmore, R.D., Muxworthy, A.R., Aldana, M., Mena, M. (Eds.), Remagnetization and Chemical Alteration of Sedimentary Rocks. Geological Society of London Special Publication 371. Geological Society Publishing House, Bath, UK, pp. 199216.Google Scholar
Costanzo-Álvarez, V., Devesa-Rey, R., Aldana, M., Barral, M.T., López-Rodríguez, D., Andrade, B., 2017a. Magnetic properties of surface sediments as proxies of recent anthropogenic pollution in the Anllóns riverbed (NW Spain). Environmental Earth Science 76, 454.CrossRefGoogle Scholar
Costanzo-Álvarez, V., Kryczka, P., Guerra, J., Aldana, M., Bolívar, D., Guzmán, J.C., 2017b. A preliminary rock magnetic characterization of Fe-oxides synthesized by coprecipitation of Fe ions in aloe vera. Latinmag Letters 7, 118.Google Scholar
Costanzo-Álvarez, V., Rapalini, A., Aldana, M., Díaz, M., Kietzmann, D., Iglesia-Llanos, M.P., Cabrera, A., Luppo, T., Vallejo, M.D.Walther, A.M., 2019. A combined rock-magnetic and EPR study about the effects of hydrocarbon-related diagenesis on the magnetic signature of oil shales (Vaca Muerta formation, southwestern Argentina). Journal of Petroleum Science and Engineering 173, 861879.CrossRefGoogle Scholar
Cúneo, L.M., Cerne, S.B., Llano, M.P., 2016. Estudio preliminar de las características del viento en la zona de Trelew en relación con la producción de energía eólica. Poster presented at XVI Reunión Argentina y VIII Latinoamericana de Agrometeorología. Puerto Madryn, september 2016.Google Scholar
Danladi, I.B., Akçer-Ön, S., 2018. Solar forcing and climate variability during the past millennium as recorded in a high altitude lake: Lake Salda (SW Anatolia). Quaternary International 486, 185198.CrossRefGoogle Scholar
Egli, R., 2003. Analysis of the field dependence of remanent magnetization curves. Journal of Geophysical Research 108(B2).CrossRefGoogle Scholar
Evans, M.E., Heller, F., 2003. Environmental Magnetism. Principles and Applications of Enviromagnetics. Academic Press (USA).Google Scholar
Garreaud, R., Lopez, P., Minvielle, M., Rojas, M., 2013. Large-scale control on the Patagonian climate. Journal of Climate 26, 215230.CrossRefGoogle Scholar
Garreaud, R.D., Vuille, M., Compagnucci, R., Marengo, J., 2009. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 180195.CrossRefGoogle Scholar
Geiss, C.E., Umbanhowar, C.E., Camill, P., Banerjee, S.K., 2003. Sediment magnetic properties reveal Holocene climate change along the Minnesota prairie-forest ecotone. Journal of Paleolimnology 30, 151166.CrossRefGoogle Scholar
Glasser, N.F., Harrison, S., Winchester, V., Aniya, M., 2004. Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Global and Planetary Change 43, 79101.CrossRefGoogle Scholar
Gogorza, C.S.G., Irurzun, M.A., Chaparro, M.A.E., Lirio, J.M., Nunez, H., Bercoff, P.G., Sinito, A.M., 2006. Relative paleointensity of the geomagnetic Field over the last 21,000 years BP from sediment cores, Lake El Trébol (Patagonia, Argentina). Earth Planets Space 58, 13231332.CrossRefGoogle Scholar
Gogorza, C.S.G., Irurzun, M.A., Sinito, A.M., Lisé-Pronovost, A., St-Onge, G., Haberzettl, T., Ohlendorf, C., Kastner, S., Zolitschka, B., 2012. High-resolution paleomagnetic records from Laguna Potrok Aike (Patagonia, Argentina) for the last 16,000 years. Geochemistry, Geophysics, Geosystems 13, Q12Z37.CrossRefGoogle Scholar
Gogorza, C.S.G., Lirio, J.M., Nuñez, H., Chaparro, M., Bertorello, H.R., Sinito, A.M., 2004. Paleointensity studies on Holocene–Pleistocene sediments from lake Escondido, Argentina. Physics of the Earth and Planetary Interiors 145, 219238.CrossRefGoogle Scholar
Gogorza, C.S.G., Sinito, A.M., Lirio, J.M., Nuñez, H., Chaparro, M., Vilas, J.F., 2002. Paleosecular variations 0–19,000 years recorded by sediments from Escondido Lake (Argentina). Physics of the Earth and Planetary Interiors 133, 3555.CrossRefGoogle Scholar
Graham, E.J., Rea, D.K., 1980. Grain size and mineralogy of sediment cores from Western Lake Huron. International Association for Great Lakes Research 6, 129140.CrossRefGoogle Scholar
Heslop, D., Dekkers, M.J., Kruiver, M., Van Oorschot, H., 2002. Analysis of isothermal remanent magnetization acquisition curves using the expectation maximization algorithm. Geophysical Journal International 148, 5864.CrossRefGoogle Scholar
Irurzun, M.A., Gogorza, C.S.G., Chaparro, M.A.E., Lirio, J.M., Nuñez, H., Vilas, J.F., Sinito, A.M., 2006. Paleosecular variations recorded by Holocene–Pleistocene sediments from Lake El Trébol (Patagonia, Argentina). Physics of the Earth and Planetary Interiors 154, 117.CrossRefGoogle Scholar
Irurzun, M.A., Gogorza, C.S.G., Sinito, A.M., Chaparro, M.A.E., Nuñez, H., Lirio, J.M., 2008. Paleosecular variations 12–20 kyr as recorded by sediments from Lake Moreno (southern Argentina). Studia Geophysica et Geodaetica 52, 157172.CrossRefGoogle Scholar
Irurzun, M.A., Gogorza, C.S.G., Torcida, S., Lirio, J.M., Nuñez, H., Bercoff, P.G., Chaparro, M.A.E., Sinito, A.M., 2009. Rock magnetic properties and relative paleointensity stack between 13 and 24 kyr BP calibrated ages from sediment cores, Lake Moreno (Patagonia, Argentina). Physics of the Earth and Planetary Interiors 172, 157168.CrossRefGoogle Scholar
Irurzun, M.A., Orgeira, M.J., Gogorza, C.S.G., Sinito, A.M., Compagnucci, R., Zolitschka, B., 2014. Magnetic parameters and their palaeoclimatic implications—the sediment record of the last 15 500 cal. BP from Laguna Potrok Aike (Argentina). Geophysical Journal International 198, 710726.CrossRefGoogle Scholar
Kliem, P., Baumgarten, H., Gebhardt, C., Hahn, A., Ohlendorf, C., Zolitschka, B., 2017. Periodic 1.5 ka climate variations during MIS 2 in the belt of Southern Hemispheric westerlies. Quaternary Research 88, 110120.CrossRefGoogle Scholar
Kruiver, M., Dekkers, P., Heslop, D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization. Earth and Planetary Science Letters 189, 269276.CrossRefGoogle Scholar
Lamy, F., Kilian, R., Arz, H.W., Francois, J.P., Kaiser, J., Prange, M., Steinke, T., 2010. Holocene changes in the position and intensity of the southern westerly wind belt. Nature Geoscience 3, 695699.CrossRefGoogle Scholar
Lane, C.S., Horn, S.P., Mora, C.I., Orvis, K.H., 2009. Late-Holocene paleoenvironmental change at mid-elevation on the Caribbean slope of the Cordillera Central, Dominican Republic: a multi-site, multi-proxy analysis. Quaternary Science Reviews 28, 22392260.CrossRefGoogle Scholar
Li, Y.X., Yu, Z., Kodama, K.P., Moeller, R.E., 2006. A 14,000-year environmental change history revealed by mineral magnetic data from White Lake, New Jersey, USA. Earth and Planetary Science Letters 246, 2740.CrossRefGoogle Scholar
Lisé-Pronovost, A., St-Onge, G., Gogorza, C., Haberzettl, T., Jouve, G., Francus, P., Ohlendorf, C., Gebhardt, C., Zolitschka, B., PASADO Science Team, 2015. Rock-magnetic proxies of wind intensity and dust since 51,200 cal BP from lacustrine sediments of Laguna Potrok Aike, southeastern Patagonia. Earth and Planetary Science Letters 411, 7286.CrossRefGoogle Scholar
Lisé-Pronovost, A., St-Onge, G., Gogorza, C., Haberzettl, T., Preda, M., Kliem, P., Francus, P., Zolitschka, B., PASADO Science Team, 2013. High-resolution paleomagnetic secular variations and relative paleointensity since the Late Pleistocene in southern South America. Quaternary Science Reviews 71, 91108.CrossRefGoogle Scholar
Lisé-Pronovost, A., St-Onge, G., Gogorza, C., Jouve, G., Francus, P., Zolitschka, B., PASADO Science Team, 2014. Rock-magnetic signature of precipitation and extreme runoff events in south-eastern Patagonia since 51,200 cal BP from the sediments of Laguna Potrok Aike. Quaternary Science Reviews 98, 110125.CrossRefGoogle Scholar
López, C., Rial, P., Elissalde, N., Llanos, E., Behr, S., 2011. Grandes unidades de paisaje de la patagonia argentina. Jornadas Regionales de Información Geográfica y Ordenamiento Territorial 2, 217229.Google Scholar
Mancini, M.V 1994. Recent pollen sedimentation in Los Padres pond, Buenos Aires Province, Argentina. Journal of Paleolimnology 10, 2534.CrossRefGoogle Scholar
Martín-Hernández, F., Dekkers, M.J., Bominaar-Silkens, I.M.A., Maan, J.C., 2008. Magnetic anisotropy behaviour of pyrrhotite as determined by low- and high-field experiments. Geophysical Journal International 174, 4254.CrossRefGoogle Scholar
Nichols, G., 2009. Sedimentology and Stratigraphy. 2nd ed.Wiley-Blackwell, Oxford.Google Scholar
Ohlendorf, C., Fey, M., Massaferro, J., Haberzettl, T., Laprida, C., Lücke, A., Maidana, N., et al. , 2014. Late Holocene lake-level history and evidence for a 4.2 ka BP dry event inferred from the sediments of Laguna Cháltel (southeastern Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 411, 229248.CrossRefGoogle Scholar
Ortega Guerrero, B., Thompson, R., Urrutia Fucugauchi, J., 2000. Magnetic properties of lake sediments from Lake Chalco, central Mexico, and their palaeoenvironmental implications. Journal of Quaternary Science 15, 127140.3.0.CO;2-Z>CrossRefGoogle Scholar
Palermo, P., Irurzun, M.A., Gogorza, C., Sinito, A.M., Ohlendorf, C., Zolitschka, B., 2019. Rock-magnetic and paleomagnetic studies on Late-Holocene sediments from Laguna Cháltel (Patagonia, Argentina). Journal of South American Earth Sciences 90, 204215.CrossRefGoogle Scholar
Paruelo, J.M., Beltrán, A., Jobbágy, E., Sala, O.E., Golluscio, R.A., 1998. The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8, 85101.Google Scholar
Peralta, A., Costanzo-Álvarez, V., Carrillo, E., Durán, L.E., Aldana, M. and Rey, D., 2013. Numerical relationships between magnetic parameters measured in Quaternary sediments and global paleoclimatic proxies. Studia Geophysica et Geodaetica 57, 647668.CrossRefGoogle Scholar
Peters, C., Dekkers, M.J., 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Physics and Chemistry of the Earth 28, 659667.CrossRefGoogle Scholar
Rada Torres, M.A., Costanzo-Álvarez, V., Aldana, M., Suárez, N., Campos, C., Mackowiak-Antczak, M.M., Brandt, M.C., 2011. Petrographic, rock magnetic and dielectric characterization of prehistoric Amerindian potsherds from Venezuela. Studia Geophysica et Geodaetica 55, 717736.CrossRefGoogle Scholar
Robertson, D.J., France, D.E., 1994. Discrimination of remanence-carrying minerals in mixture, using isothermal remanent magnetisation acquisition curves. Physics of the Earth and Planetary Interiors 84, 223234.CrossRefGoogle Scholar
Schimpf, D., Kilian, R., Kronz, A., Simon, K., Spötl, C., Wörner, G., Deininger, M., Mangini, A., 2011. The significance of chemical, isotopic, and detrital components in three coeval stalagmites from the superhumid southernmost Andes (53°S) as high-resolution palaeo-climate proxies. Quaternary Science Reviews 30, 443459.CrossRefGoogle Scholar
Tauxe, L., 1993. Sedimentary records of relative paleointensities of the geomagnetic Field: theory and practice. Reviews of Geophysics 31, 319354.CrossRefGoogle Scholar
Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Allen & Unwin, London.CrossRefGoogle Scholar
Tonello, M.S., Mancini, M.V., Seppä, H., 2009. Quantitative reconstruction of Holocene precipitation changes in southern Patagonia. Quaternary Research 72, 410420.CrossRefGoogle Scholar
Turner, G.M., 1997. Environmental magnetism and magnetic correlation of high resolution lake sediment records from Northern Hawkés Bay, New Zealand. Journal of Geology and Geophysics 40, 287298.CrossRefGoogle Scholar
Vázquez, G., Ortega, B., Davies, S.J., Aston, B.J., 2010. Registro sedimentario de los últimos ca. 17000 años del lago de Zirahuén, Michoacán, México. Boletín de la Sociedad Geológica Mexicana 62, 325343.CrossRefGoogle Scholar
Zolitschka, B., Anselmetti, F., Ariztegui, D., Corbella, H., Francus, P., Lücke, A., Maidana, N.I., Ohlendorf, C., Schäbitz, F., Wastegård, S., 2013. Environment and climate of the last 51,000 years e new insights from the Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO). Quaternary Science Reviews 71, 112.CrossRefGoogle Scholar
Zolitschka, B., Fey, M., Janssen, S., Maidana, N.I., Mayr, C., Wulf, S., Haberzettl, T., et al. , 2019. Southern Hemispheric Westerlies control sedimentary processes of Laguna Azul (south-eastern Patagonia, Argentina). The Holocene 29, 403420.CrossRefGoogle Scholar
Zolitschka, B., Schäbitz, F., Lücke, A., Corbella, H., Ercolano, B., Fey, M., Haberzettl, T., et al. , 2006. Crater lakes of the Pali Aike volcanic field as key sites for paleoclimatic and paleoecological reconstructions in southern Patagonia, Argentina. Journal of South American Earth Sciences 21, 294309.CrossRefGoogle Scholar