Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T12:39:37.845Z Has data issue: false hasContentIssue false

The Taylor Dome Antarctic 18O Record and Globally Synchronous Changes in Climate1

Published online by Cambridge University Press:  20 January 2017

Pieter M. Grootes
Affiliation:
Department of Earth and Space Sciences and Quaternary Research Center, University of Washington, Seattle, Washington, 98195, E-mail: pgrootes@leibniz.uni-kiel.de
Eric J. Steig
Affiliation:
Department of Earth and Space Sciences and Quaternary Research Center, University of Washington, Seattle, Washington, 98195, E-mail: pgrootes@leibniz.uni-kiel.de
Minze Stuiver
Affiliation:
Department of Earth and Space Sciences and Quaternary Research Center, University of Washington, Seattle, Washington, 98195, E-mail: pgrootes@leibniz.uni-kiel.de
Edwin D. Waddington
Affiliation:
Department of Earth and Space Sciences and Quaternary Research Center, University of Washington, Seattle, Washington, 98195, E-mail: pgrootes@leibniz.uni-kiel.de
David L. Morse
Affiliation:
Department of Earth and Space Sciences and Quaternary Research Center, University of Washington, Seattle, Washington, 98195, E-mail: pgrootes@leibniz.uni-kiel.de
Marie-Josée Nadeau
Affiliation:
Leibniz-Labor, Christian-Albrechts-Universität, Kiel, 24118, Germany

Abstract

The 18O/16O profile of a 554-m long ice core through Taylor Dome, Antarctica, shows the climate variability of the last glacial–interglacial cycle in detail and extends at least another full cycle. Taylor Dome shares the main features of the Vostok record, including the early climatic optimum with later cool phase of the last interglacial period in Antarctica. Taylor Dome δ18O fluctuations are more abrupt and larger than those at Vostok and Byrd Station, although still less pronounced than those of the Greenland GISP2 and GRIP records. The influence of the Atlantic thermohaline circulation on regional ocean heat transport explains the partly “North Atlantic” character of this Antarctic record. Under full glacial climate (marine isotope stage 4, late stage 3, and stage 2), this marine influence diminished and Taylor Dome became more like Vostok. Varying degrees of marine influence produce climate heterogeneity within Antarctica, which may account for conflicting evidence regarding the relative phasing of Northern and Southern Hemisphere climate change.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Oxygen isotope data with depth and time scale are available at the stable isotope laboratory home page at the University of Washington (depts. washington.edu/isolab) and the Leibniz-Labor, Christian-Albrecht University, Kiel (www.ngdc.noaa.gov/ paleo). These and additional Taylor Dome data sets are also available from the World Data Center for Paleoclimatology at the National Geophysical Data Center (www.ngdc.noaa.gov/ paleo).

References

Alley, R.B, and Clark, P.U The deglaciation of the Northern Hemisphere: A global perspective. Annual Reviews of Earth and Planetary Sciences 27, (1999). 149 182.Google Scholar
Bard, E, Rostek, F, and Sonzogni, C Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385, (1997). 707 710.CrossRefGoogle Scholar
Beer, J, Johnsen, S.J, Bonani, G, Finkel, R.C, Langway, C.C, Oeschger, H, Stauffer, B, Suter, M, Woelfli, W Bard, E, and Broecker, W.S The Last Deglaciation: Absolute and Radiocarbon Chronologies. (1992). Springer, New York. 141 153.Google Scholar
Behl, R, and Kennett, J Brief interstadial events in the Santa Barbara Basin, NE Pacific, during the past 60 kyr. Nature 379, (1996). 243 245.CrossRefGoogle Scholar
Bender, M, Sowers, T, Dickson, M.-L, Orchardo, J, Grootes, P, Mayewski, P.A, and Meese, D.A Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature 372, (1994). 663 666.Google Scholar
Bender, M.L, Malaize, B, Orchardo, J, Sowers, T, and Jouzel, J High precision correlations of Greenland and Antarctic ice core records over the last 100 kyr. Clark, P.U, Webb, R.S, and Keigwin, L.D Mechanisms of Global Climate Change at Millennial Time Scales. (1999). Am. Geophy. Union, Washington. 149 164.Google Scholar
Blunier, T, and Brook, E.J Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, (2001). 109 112.CrossRefGoogle ScholarPubMed
Blunier, T, Schwander, J, Stauffer, B, Stocker, T.F, Dällenbach, A, Indermühle, A, Tschumi, J, Chappellaz, J, Raynaud, D, and Barnola, J.-M Timing of the Antarctic cold reversal and the atmospheric CO2 increase with respect to the Younger Dryas event. Geophysical Research Letters. 24, (1997). 2683 2686.Google Scholar
Blunier, T, Chappellaz, J, Schwander, J, Dällenbach, A, Stauffer, B, Stocker, T.F, Raynaud, D, Jouzel, J, Clausen, H.B, Hammer, C.U, and Johnsen, S.J Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, (1998). 739 743.CrossRefGoogle Scholar
Bond, G, and Lotti, R Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267, (1995). 1005 1010.Google Scholar
Bond, G, Broecker, W.S, Johnsen, S.J, McManus, J, Labeyrie, L, Jouzel, J, and Bonani, G Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, (1993). 143 146.Google Scholar
Bond, G, Showers, W, Cheseby, M, Lotti, R, Almasi, P, de Menocal, P, Priore, P, Cullen, H, Hajdas, I, and Bonani, G A pervasive millennial-scale cycle in the North Atlantic Holocene and glacial climates. Science 278, (1997). 1257 1266.Google Scholar
Broecker, W.S Paleocean circulation during the last deglaciation; a bipolar seesaw?. Paleoceanography 13, (1997). 119 121.CrossRefGoogle Scholar
Brook, E.J, Harder, S, Severinghaus, J, Steig, E.J, and Sucher, C.M On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochemical Cycles 14, (2000). 559 572.Google Scholar
Charles, C.D, Lynch-Stieglitz, J, Ninnemann, U.S, and Fairbanks, R.G Climate connections between the hemispheres revealed by deep sea sediment core/ice core correlations. Earth and Planetary Science Letters 142, (1996). 19 27.CrossRefGoogle Scholar
Clow, G.D, and Waddington, E.D Acquisition of borehole temperature measurements from Taylor Dome and the Dry Valleys for paleoclimate reconstruction. Antarctic Journal of the United States 31, (1996). 71 72.Google Scholar
Cheddadi, R, Mamakowa, K, Guiot, J, Beaulieu, L.-L.de, Reille, M, Andrieu, V, Granoszewski, W, and Peyron, O Was the climate of the Eemian stable? A quantitative climate reconstruction from seven European pollen records. Palaeogeography, Palaeoclimatology, Palaeoecology 143, (1998). 73 85.Google Scholar
Cortijo, E, Duplessy, J.C, Labeyrie, L, Leclaire, H, Duprat, J, and van Weering, T.C.E Eemian cooling in the Norwegian Sea and North Atlantic ocean preceding continental ice-sheet growth. Nature 372, (1994). 446 449.CrossRefGoogle Scholar
Cortijo, E, Labeyrie, L, Vidal, L, Vautravers, M, Chapman, M, Duplessy, J.-C, Elliot, M, Arnold, M, Turon, J.-L, and Auffret, G Changes in sea surface hydrology associated with Heinrich event 4 in the North Atlantic Ocean between 40° and 60°N. Earth and Planetary Science Letters 146, (1997). 29 45.Google Scholar
Crowley, T.J North Atlantic deep water cools the Southern Hemisphere. Paleoceanography 7, (1992). 489 497.Google Scholar
Dansgaard, W, Johnsen, S.J, Clausen, H.B, Dahl-Jensen, D, Gundestrup, N.S, Hammer, C.U, Hvidberg, C.S, Steffensen, J.P, Sveinbjörnsdottir, A.E, Jouzel, J, and Bond, G Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, (1993). 218 220.CrossRefGoogle Scholar
Fairbanks, R.G A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, (1989). 637 642.Google Scholar
Faustova, M.A Late Pleistocene glaciation of European USSR. Velichko, A.A Late Quaternary Environments of the Soviet Union. (1984). Univ. of Minnesota Press, Minneapolis. 3 12.Google Scholar
Fisher, D.A, Koerner, R.M, Paterson, W.S.B, Dansgaard, W, Gundestrup, N, and Reeh, N Effect of wind scouring on climatic records from ice-core oxygen-isotope profiles. Nature 301, (1983). 205 209.Google Scholar
Grootes, P.M, and Stuiver, M Oxygen 18/16 variability in Greenland snow and ice with 10−3 to 105-year time resolution. Journal of Geophysical Research 102, (1997). 26,455 26,470.Google Scholar
Grootes, P.M, Stuiver, M, White, J.W.C, Johnsen, S.J, and Jouzel, J Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, (1993). 552 554.Google Scholar
Grootes, P.M, Steig, E.J, and Stuiver, M Taylor Ice Dome study 1993–1994: An ice core to bedrock. Antarctic Journal of the United States 29, (1994). 79 81.Google Scholar
Hanebuth, T, Stattegger, K, and Grootes, P.M Rapid flooding of the Sunda Shelf: A late-glacial sea-level record. Science 288, (2000). 1033 1035.Google Scholar
Johnsen, S.J, Clausen, H.B, Dansgaard, W, Fuhrer, K, Gundestrup, N, Hammer, C.U, Iversen, P, Jouzel, J, Stauffer, B, and Steffensen, J.P Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, (1992). 311 313.CrossRefGoogle Scholar
Jouzel, J, Vaikmae, R, Petit, J.R, Martin, M, Duclos, Y, Stievenard, M, Lorius, C, Toots, M, Méliéres, M.A, Burckle, L.H, Barkov, N.I, and Kotlyakov, V.M The two-step shape and timing of the last deglaciation in Antarctica. Climate Dynamics 11, (1995). 151 161.Google Scholar
Jouzel, J, Alley, R.B, Cuffey, K.M, Dansgaard, W, Grootes, P, Hoffmann, G, Johnsen, S.J, Koster, R.D, Peel, D, Shuman, C.A, Stievenard, M, Stuiver, M, and White, J Validity of the temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research 102, (1997). 26,471 26,487.Google Scholar
Jouzel, J, Masson, V, Cattani, O, Falourd, S, Stievenard, M, Stenni, B, Longinelli, A, Johnsen, S.J, Steffenssen, J.P, Petit, J.R, Schwander, J, Souchez, R, and Barkov, N.I A new 27 ky high resolution East Antarctic climate record. Geophysical Research Letters 28, (2001). 3199 3202.CrossRefGoogle Scholar
Kiefer, T, Sarnthein, M, Erlenkeuser, H, Grootes, P.M, and Roberts, A.P North Pacific response to millennial-scale changes in ocean circulation over the last 60 kyr. Paleoceanography 16, (2001). 179 189.Google Scholar
Koster, R.D, Jouzel, J, Suozzo, R.J, and Russell, G.L Origin of July Antarctic precipitation and its influence on deuterium content—a GCM analysis. Climate Dynamics 7, (1992). 195 203.Google Scholar
Litt, T, Junge, F.W, and Böttger, T Climate during the Eemian in north-central Europe—a critical review of the palaeobotanical and stable isotope data from central Germany. Vegetation History and Archaeobotany 5, (1996). 247 256.Google Scholar
Manabe, S, and Stouffer, R.J Study of abrupt climate change by a coupled ocean-atmosphere model. Quaternary Science Reviews 19, (2000). 285 299.CrossRefGoogle Scholar
Mangerud, J, Andersen, S.T, Berglund, B.E, and Donner, J.J Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3, (1974). 109 128.Google Scholar
Maslin, M, Sarnthein, M, Knaack, J.-J, Grootes, P, and Tzedakis, C Intra-interglacial cold events: An Eemian-Holocene comparison. Cramp, A, Macleod, C.J, Lee, S.V, and Jones, E.J.W Geological Evolution of Ocean Basins: Results from the Ocean Drilling Program. (1998). Geol. Soc, London. 91 99.Google Scholar
Mayewski, P.A, Twickler, M.S, Whitlow, S.I, Meeker, L.D, Yang, Q, Thomas, J, Kreutz, K, Grootes, P.M, Morse, D.L, Steig, E.J, Waddington, E.D, Saltzman, E.S, Whung, P.-Y, and Taylor, K.C Climate change during the last deglaciation in Antarctica. Science 272, (1996). 1636 1638.CrossRefGoogle ScholarPubMed
McCabe, A.M, and Clark, P.U Ice-sheet variability around the North Atlantic Ocean during the last deglaciation. Nature 392, (1998). 373 377.Google Scholar
McManus, J.F, Bond, G.C, Broecker, W.S, Johnsen, S, Labeyrie, L, and Higgins, S High-resolution climate records from the North Atlantic during the last Interglacial. Nature 371, (1994). 326 329.Google Scholar
Meese, D. A, Alley, R. B, Fiacco, R. J, Germani, M. S, Gow, A. J, Grootes, P. M, Illing, M, Mayewski, P. A, Morrison, M. C, Ram, M, Taylor, K. C, Yang, Q, and Zielinski, G. A. (1994). Preliminary depth-age scale of the GISP2 ice core. Special Cold Regions Research and Engineering Laboratory (CRREL) Report, 94 -1.Google Scholar
Morse, D.L Glacier Geophysics at Taylor Dome, Antarctica. (1997). University of Washington, Seattle.Google Scholar
Morse, D.L, Waddington, E.D, and Steig, E.J Ice age storm trajectories inferred from radar stratigraphy at Taylor Dome, Antarctica. Geophysical Research Letters 25, (1998). 3383 3386.Google Scholar
Mosley-Thompson, E, Thompson, L.G, Grootes, P.M, and Gundestrup, N Little ice age (neoglacial) paleoenvironmental conditions at Siple Station, Antarctica. Annals of Glaciology 14, (1990). 199 204.Google Scholar
Mulvaney, R, Röthlisberger, R, Wolff, E.W, Sommer, S, Schwander, J, Hutterli, M.A, and Jouzel, J The transition from the last glacial period in inland and near-coastal Antarctica. Geophysical Research Letters 27, (2000). 2673 2676.CrossRefGoogle Scholar
Petit, J.R, Jouzel, J, Raynaud, D, Barkov, N.I, Barnola, J.-M, Basile, I, Bender, M, Chappellaz, J, Davis, M, Delaygue, G, Delmotte, M, Kotlyakov, V.M, Legrand, M, Lipenkov, V.Y, Lorius, C, Pépin, L, Ritz, C, Saltzman, E, and Stievenard, M Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, (1999). 429 436.CrossRefGoogle Scholar
Raper, S.C.B, Wigley, T.M.L, Mayes, P.R, Jones, P.D, and Salinger, M.J Variations in surface air temperatures. Part 3. The Antarctic, 1957–82. Monthly Weather Review 112, (1984). 1341 1353.2.0.CO;2>CrossRefGoogle Scholar
Rasmussen, T.L, Thomsen, E, van Weering, T.C.E, and Labeyrie, L Rapid changes in surface and deep water conditions at the Faroe margin during the last 58,000 years. Paleoceanography 11, (1996). 757 771.Google Scholar
Rasmussen, T.L, Balbon, E, Thomsen, E, Labeyrie, L, and van Weering, T.C.E Climate records and changes in deep outflow from the Norwegian Sea ∼150–55 ka. Terra Nova 11, (1999). 61 66.Google Scholar
Reasoner, M.A, and Jodry, M.A Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA. Geology 28, (2000). 51 54.Google Scholar
Sachs, J.P, and Lehman, S.J Subtropical North Atlantic temperatures 60,000 to 30,000 years ago. Science 286, (1999). 756 759.Google Scholar
Sarnthein, M, Jansen, E, Weinelt, M, Arnold, M, Duplessy, J.C, Erlenkeuser, H, Flatøy, A, Johannessen, G, Johannessen, T, Jung, S, Koç, N, Labeyrie, L, Maslin, M, Pflaumann, U, and Schulz, H Variations in Atlantic surface ocean paleoceanography, 50°–80°N: A time-slice record of the last 30,000 years. Paleoceanography 10, (1995). 1063 1094.Google Scholar
Schiller, A, Mikolajewicz, U, and Voss, R The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model. Climate Dynamics 13, (1997). 325 347.Google Scholar
Shackleton, N.J, and Opdyke, N.D Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 and 106 year scale. Quaternary Research 3, (1973). 39 55.Google Scholar
Sowers, T, and Bender, M Climate records covering the Last Deglaciation. Science 269, (1995). 210 214.CrossRefGoogle ScholarPubMed
Steig, E.J Mid-Holocene climate change. Science 286, (1999). 1485 1487.Google Scholar
Steig, E.J, Hart, C.P, White, J.W.C, Cunningham, W.L, Davis, M.D, and Saltzman, E.S Changes in climate, ocean and ice-sheet conditions in the Ross embayment, Antarctica, at 6 ka. Annals of Glaciology 27, (1998). 305 310.CrossRefGoogle Scholar
Steig, E.J, Brook, E.J, White, J.W.C, Sucher, C.M, Bender, M.L, Lehman, S.J, Waddington, E.D, Morse, D.L, and Clow, G.D Synchronous climate changes in Antarctica and the North Atlantic. Science 282, (1998). 92 95.Google Scholar
Steig, E.J, Morse, D.L, Waddington, E.D, Stuiver, M, Grootes, P.M, Mayewski, P.A, Whitlow, S.L, and Twickler, M.S Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica. Geografiska Annaler 82A, (2000). 213 235.CrossRefGoogle Scholar
Stocker, T.F The seesaw effect. Science 282, (1998). 61 62.Google Scholar
Stocker, T.F Abrupt climate changes: from the past to the future—A review. International Journal of Earth Sciences 88, (1999). 365 374.Google Scholar
Stuiver, M, and Grootes, P.M GISP2 oxygen isotope ratios. Quaternary Research 53, (2000). 277 284.CrossRefGoogle Scholar
van Kreveld, S, Sarnthein, M, Erlenkeuser, H, Grootes, P, Jung, S, Nadeau, M.-J, Pflaumann, U, and Völker, A Potential links between surging ice sheets, circulation changes, and the Dansgaard-Oeschger cycles in the Irminger Sea, 60–18 kyr. Paleoceanography 15, (2000). 425 442.Google Scholar
Vidal, L, Schneider, R.R, Marchal, O, Bickert, T, Stocker, T.F, and Wefer, G Link between the North and South Atlantic during the Heinrich events of the last glacial period. Climate Dynamics 15, (1999). 909 919.Google Scholar
Vorren, T.O, Vorren, K.-D, Alm, T, Gulliksen, S, and Løvlie, R The last deglaciation (20,000 to 11,000 B.P.) on Andøya, northern Norway. Boreas 17, (1988). 41 77.Google Scholar