Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-15T18:06:59.643Z Has data issue: false hasContentIssue false

Systematics and paleobiogeography of Quaternary corals from Cabo Verde Archipelago

Published online by Cambridge University Press:  20 May 2024

Anne-Sophie Reeb*
Affiliation:
SMNS–Staatliches Museum für Naturkunde Stuttgart, 70191 Stuttgart, Germany
Ana Cristina Rebelo
Affiliation:
SMNS–Staatliches Museum für Naturkunde Stuttgart, 70191 Stuttgart, Germany Divisão de Geologia Marinha, Instituto Hidrográfico, 1249-093 Lisbon, Portugal CIBIO–Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, and BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Pólo dos Açores, Azores, Portugal; and UNESCO Chair, Land Within Sea: Biodiversity and Sustainability in Atlantic Islands, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
Ricardo S. Ramalho
Affiliation:
School of Earth and Environmental Sciences, Cardiff University, Cardiff, CF10 3AT, UK Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz and Departamento de Geologia, Lisboa, Portugal, 1746-016 Lisbon, Portugal Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964-8000, USA
José Madeira
Affiliation:
Universidade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz and Departamento de Geologia, Lisboa, Portugal, 1746-016 Lisbon, Portugal
Michael W. Rasser
Affiliation:
SMNS–Staatliches Museum für Naturkunde Stuttgart, 70191 Stuttgart, Germany
*
Corresponding author: Anne-Sophie Reeb; Email: sophie.reeb@outlook.de

Abstract

Although true coral reefs have seldom been reported from the fossil record of the Cabo Verde Archipelago, many single fossil corals and coral colonies can be found reworked in tsunami deposits and in raised marine terraces onshore on these islands. This study provides the first detailed survey of fossil corals from 7 of the 10 islands of the archipelago, sampled from Pleistocene marine terraces and tsunami deposits. A total of 168 scleractinian corals were analyzed and identified to genus and/or species level. Thirteen taxa from the families Acroporidae, Dendrophylliidae, Faviidae, Pocilloporidae, Poritidae, and Rhizangiidae were identified. The zooxanthellate fossil corals found on the Cape Verde Archipelago likely migrated from the Caribbean to the West African coast, while azooxanthellate species likely originated from the Indo-Pacific. Differences between present-day coral assemblages and fossil assemblages are assumed to result from changing environmental factors. Although reef-building taxa occur (e.g., Porites), extensive reef frameworks are absent.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baarli, B.G., Santos, A.G., Mayoral, E.J., Ledesma-Vazquez, J., Johnson, M.E., Da Silva, C.M., Cachão, M., 2013. What Darwin did not see: Pleistocene fossil assemblages on a high-energy coast at Ponta das Bicudas, Santiago, Cape Verde Islands. Geological Magazine 150, 183189.CrossRefGoogle Scholar
Bebiano, J.B., 1932. A geologia do Arquipélago de Cabo Verde. Comunicações dos Serviços Geológicos de Portugal 18.Google Scholar
Bernard, H.M., 1906. Catalogue of the Madreporarian Corals in the British Museum (Natural History). Vol. VI, The Family Poritidae. II, The Genus Porites. Part II, Porites of the Atlantic West Indies, with the European Fossil Forms. British Museum of Natural History, Department of Zoology, London.Google Scholar
Boekschoten, G.J., Borel Best, M., 1988. Fossil and recent shallow water corals from the Atlantic Islands off Western Africa, CANCAP contribution no. 56. Zoologische Mededelingen 62, 99112.Google Scholar
Budd, A., Foster, C., Dawson, J., Johnson, K., 2001. The Neogene Marine Biota of Tropical America (“NMITA”) database: accounting for biodiversity in paleontology. Journal of Paleontology 75, 743751.2.0.CO;2>CrossRefGoogle Scholar
Budd, A.F., 2000. Diversity and extinction in the Cenozoic history of Caribbean reefs. Coral Reefs 19, 2535.CrossRefGoogle Scholar
Budd, A.F., Fukami, H., Smith, N.D., Knowlton, N., 2012. Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zoological Journal of the Linnean Society 166, 465529.CrossRefGoogle Scholar
Cairns, S.D., 1982. Stony corals (Cnidaria: Hydrozoa, Scleractinia) of Carrie Bow Cay, Belize. Smithsonian Contributions to Marine Sciences 12, 272302.CrossRefGoogle Scholar
Cairns, S.D., 2002. Dendrophylliina. Dendrophylliidae Gray 1847. Version 28. October 2002. Tree of Life Web Project. http://tolweb.org/Dendrophylliidae/19165/2002.10.28.Google Scholar
Cairns, S.D., 2007. Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bulletin of Marine Science 81, 311–22.Google Scholar
Carpenter, L.J., Fleming, Z.L., Read, K.A., Lee, J.D., Moller, S.J., Hopkins, J.R., Purvis, R.M., et al., 2010. Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory. Journal of Atmospheric Chemistry 67, 87140.CrossRefGoogle Scholar
Chevalier, J.P., 1966. Contribution à l’étude des Madréporaires des côtes occidentales de l'Afrique tropicale. Bulletin de I'Institute Fundamental d'Afrique Noire 28, 13561405.Google Scholar
Choi, E., Song, J.I., 2016. A new record of Dendrophyllia compressa (Anthozoa: Hexacorallia: Scleractinia: Dendrophylliidae) from Korea. Animal Systematics, Evolution and Diversity 32, 3843.CrossRefGoogle Scholar
Costa, P.J., Dawson, S., Ramalho, R.S., Engel, M., Dourado, F., Bosnic, I. and Andrade, C., 2021. A review on onshore tsunami deposits along the Atlantic coasts. Earth-Science Reviews 212, 103441.CrossRefGoogle Scholar
Darwin, C., 1844. Geological Observations on the Volcanic Islands Visited during the Voyage of the H.M.S. Beagle. Smith, Elder & Co., London.Google Scholar
Dawson, J.P., 2002. Biogeography of azooxanthellate corals in the Caribbean and surrounding areas. Coral Reefs 21, 2740.CrossRefGoogle Scholar
Diekmann, O.E., 2003. The Coral Genus Madracis: Speciation in Corals and Their Symbionts. PhD thesis, University of Amsterdam, Amsterdam.Google Scholar
Duarte, M.C., Romeiras, M.M., Gillespie, R.G., Clague, D.A., 2009. Cape Verde Islands. In: Gillespie, R.G., Clague, D.A. (Eds.), Encyclopedia of Islands. University of California Press, Oakland, pp. 143148.Google Scholar
Forsman, Z.H., Barshis, D.J., Hunter, C.L., Toonen, R.J., 2009. Shape-shifting corals: molecular markers show morphology is evolutionarily plastic in Porites. BMC Evolutionary Biology 9, 45.CrossRefGoogle ScholarPubMed
Foster, A.B., 1980. Ecology and morphology of the Caribbean Mio-Pliocene reef-coral Siderastrea. Acta Palaeontologica Polonica 25, 439450.Google Scholar
Gabriel, D., Fredericq, S., 2019. The marine macroalgae of Cabo Verde archipelago: an updated checklist. Arquipelago—Life and Marine Sciences 36, 3960.Google Scholar
Gama, C., Tchepel, O., Baldasano, J.M., Basart, S., Ferreira, J., Pio, C., Cardoso, J., Borrego, C., 2015. Seasonal patterns of Saharan dust over Cape Verde—a combined approach using observations and modelling. Tellus B: Chemical and Physical Meteorology 67, 24410.CrossRefGoogle Scholar
Garthwaite, R.L., Potts, D.C., Veron, J.E.N., Done, T.J., 1994. Electrophoretic identification of poritid species (Anthozoa: Scleractinia). Coral Reefs 13, 4956.CrossRefGoogle Scholar
Grousset, F., Buat-Ménard, P., Boust, D., Tian, R., Baudel, S., Pujol, C., Vergnaud-Grazzini, C., 1989. Temporal changes of eolian Saharan input in the Cape Verde abyssal plain since the last glacial period. Oceanologica Acta 12, 177185.Google Scholar
Holm, P.M., Grandvuinet, T., Friis, J., Wilson, J.R., Barker, A.K., Plesner, S., 2008. An 40Ar-39Ar study of the Cape Verde hot spot: temporal evolution in a semistationary plate environment. Journal of Geophysical Research: Solid Earth 113, B08201.CrossRefGoogle Scholar
Horton, T., Kroh, A., Ahyong, S., Bailly, N., Boyko, C.B., Brandão, S.N., Costello, M.J., et al., 2021. World Register of Marine Species. https://www.marinespecies.org at VLIZ, accessed March 7, 2022. https://doi.org/10.14284/170.CrossRefGoogle Scholar
Johnson, M.E., Baarli, B.G., 2015. Charles Darwin in the Cape Verde and Galapágos Archipelagos: the role of serendipity in development of theories on the ups and downs of oceanic islands. Earth Sciences History 34, 220242.CrossRefGoogle Scholar
Johnson, M.E., Baarli, B.G., Cachão, M., da Silva, C.M., Ledesma-Vázquez, J., Mayoral, E.J., Ramalho, R.S., Santos, A., 2012. Rhodoliths, uniformitarianism, and Darwin: Pleistocene and Recent carbonate deposits in the Cape Verde and Canary archipelagos. Palaeogeography, Palaeoclimatology, Palaeoecology 329, 83100.CrossRefGoogle Scholar
Johnson, M.E., Baarli, B.G., da Silva, C.M., Cachão, M., Ramalho, R.S., Ledesma-Vázquez, J., Mayoral, E.J., Santos, A., 2013. Coastal dunes with high content of rhodolith (coralline red algae) bioclasts: Pleistocene formations on Maio and São Nicolau in the Cape Verde archipelago. Aeolian Research 8, 19.CrossRefGoogle Scholar
Johnson, M.E., Ramalho, R.S., Baarli, B.G., Cachão, M., da Silva, C.M., Mayoral, E.J., Santos, A., 2014. Miocene–Pliocene rocky shores on São Nicolau (Cape Verde Islands): contrasting windward and leeward biofacies on a volcanically active oceanic island. Palaeogeography, Palaeoclimatology, Palaeoecology 395, 131143.CrossRefGoogle Scholar
Johnson, M.E., Baarli, B.G., Marques da Silva, C., Cachão, M., Ramalho, R.S., Santos, , A. Mayoral, E.J., 2016. Recent rhodolith deposits stranded on the windward shores of Maio (Cape Verde Islands): historical resource for the local economy. Journal of Coastal Research 32, 735743.CrossRefGoogle Scholar
Johnson, M.E., Baarli, B.G., Cachão, M., Mayoral, E., Ramalho, R.S., Santos, , A. da Silva, C.M., 2018. On the rise and fall of oceanic islands: towards a global theory following the pioneering studies of Charles Darwin and James Dwight Dana. Earth-Science Reviews 180, 1736.CrossRefGoogle Scholar
Laborel, J., 1974. West African reef corals: an hypothesis on their origin. In: Proceedings of the Second International Coral Reef Symposium 1. Great Barrier Reef Committee, Brisbane, pp. 425443.Google Scholar
Lobban, R.A., 2019. Cape Verde: Crioulo Colony to Independent Nation. Routledge, New York.Google Scholar
Lopes, E.P., Freitas, R., Silva, O., 2014. Os Corais em Cabo Verde: um património a proteger. Revista Internacional em Língua Portuguesa 27, 4564.Google Scholar
Löser, H., Angel Fernández-Mendiola, P., Pérez-Malo, J., Domínguez Pascual, S., Cahuzac, B., 2021. Redefinition of the family Rhizangiidae (Scleractinia; Cretaceous to Recent) and description of a new genus from the Early Cretaceous of Spain. Neues Jahrbuch für Geologie und PaläontologieAbhandlungen 299, 259274CrossRefGoogle Scholar
Madeira, J., Mata, J., Mourão, C., Brum da Silveira, A., Martins, S., Ramalho, R., Hoffmann, D., 2010. Volcano-stratigraphic and structural evolution of Brava Island (Cape Verde) based on 40Ar/39Ar, U/Th and field constraints. Journal of Volcanology and Geothermal Research 196, 219235.CrossRefGoogle Scholar
Madeira, J., Ramalho, R.S., Hoffmann, D.L., Mata, J., Moreira, M., 2020. A geological record of multiple Pleistocene tsunami inundations in an oceanic island: the case of Maio, Cape Verde. Sedimentology 67, 15291552.CrossRefGoogle Scholar
Mayoral, E., Ledesma-Vazquez, J., Baarli, B.G., Santos, A., Ramalho, R., Cachão, M., Da Silva, C.M., Johnson, M.E., 2013. Ichnology in oceanic islands; case studies from the Cape Verde Archipelago. Palaeogeography, Palaeoclimatology, Palaeoecology 381, 4766.CrossRefGoogle Scholar
Mayoral, E., Santos, A., Vintaned, J.G., Ledesma-Vazquez, J., Baarli, B.G., Cachão, M., da Silva, C.M., Johnson, M.E., 2018. Upper Pleistocene trace fossils from Ponta das Bicudas, Santiago, Cape Verde Islands: systematics, taphonomy and palaeoenvironmetal evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 498, 8398.CrossRefGoogle Scholar
Menezes, N., Neves, E., Kikuchi, R.K.P., Johnsson, R., 2014. Morphological variation in the Atlantic genus Siderastrea (Anthozoa, Scleractinia). Papéis Avulsos de Zoologia 54(16), 199208.Google Scholar
Molodtsova, T.N., 2006. Black corals (Anthipatharia: Anthozoa: Cnidaria) of the north-eastern Atlantic. In: Mironov, A.N., Gebruk, A.V., Southward, A.J. (Eds.), Biogeography of the North Atlantic Seamounts. KMK Scientific Press, Moscow, pp. 141151.Google Scholar
Monteiro, J., Almeida, C., Freitas, R., Delgado, A., Porteiro, F., Santos, R.S., 2008. Coral assemblages of Cabo Verde: preliminary assessment and description. In Proceedings of the 11th International Coral Reef Symposium. International Society for Reef Studies, Fort Lauderdale, FL, pp. 14161419.Google Scholar
Morri, C., Cattaneo-Vietti, R., Sartoni, G., Bianchi, C.N., 2000. Shallow epibenthic communities of Ilha do Sal (Cape Verde Archipelago, Eastern Atlantic). III Simpósio da Fauna e Flora das Ilhas Atlânticas, Supplement, 157165.Google Scholar
NASA Shuttle Radar Topography Mission, 2013. Shuttle Radar Topography Mission (SRTM) Global. Distributed by OpenTopography. https://doi.org/10.5069/G9445JDF, accessed: December 10, 2023.CrossRefGoogle Scholar
Neves, E., Johnsson, R., 2009. Taxonomic revision of the southwestern Atlantic Madracis and the description of Madracis fragilis n. sp. (Scleractinia: Pocilloporidae), a new coral species from Brazil. Scientia Marina 73, 739746.CrossRefGoogle Scholar
Paris, R., Giachetti, T., Chevalier, J., Guillou, H., Frank, N., 2011. Tsunami deposits in Santiago Island (Cape Verde archipelago) as possible evidence of a massive flank failure of Fogo volcano. Sedimentary Geology 239, 129145.CrossRefGoogle Scholar
Paris, R., Ramalho, R.S., Madeira, J., Ávila, S.P., May, S.M., Rixhon, G., Engel, M., et al., 2018. Megatsunami conglomerates and flank collapses of ocean island volcanoes. Marine Geology 395, 168187.CrossRefGoogle Scholar
Pérez-Torrado, F.J., Paris, R., Cabrera, M.C., Schneider, J.L., Wassmer, P., Carracedo, J.C., Rodríguez-Santana, Á., Santana, F., 2006. Tsunami deposits related to flank collapse in oceanic volcanoes: the Agaete Valley evidence, Gran Canaria, Canary Islands. Marine Geology 227, 135149.CrossRefGoogle Scholar
Ramalho, R., Helffrich, G., Cosca, M., Vance, D., Hoffmann, , D. Schmidt, D.N., 2010a. Episodic hotspot swell growth inferred from variable uplift from the Cape Verde hot spot Islands. Nature Geoscience 3, 774777.CrossRefGoogle Scholar
Ramalho, R., Helffrich, G., Schmidt, D.N., Vance, D., 2010b. Tracers of uplift and subsidence in the Cape Verde Archipelago. Journal of the Geological Society of London 167, 519538.CrossRefGoogle Scholar
Ramalho, R.A., 2011. Building the Cape Verde Islands. Springer Science & Business Media, Berlin.CrossRefGoogle Scholar
Ramalho, R.S., Helffrich, G., Cosca, M., Vance, D., Hoffmann, D., Schmidt, D.N., 2010c. Vertical movements of ocean island volcanoes: insights from a stationary plate environment. Marine Geology 275(1–4), 8495.CrossRefGoogle Scholar
Ramalho, R.S., Quartau, R., Trenhaile, A.S., Mitchell, N.C., Woodroffe, C.D., Ávila, S.P., 2013. Coastal evolution on volcanic oceanic islands: a complex interplay between volcanism, erosion, sedimentation, sea-level change and biogenic production. Earth-Science Reviews 127, 140170.CrossRefGoogle Scholar
Ramalho, R.S., Winckler, G., Madeira, J., Helffrich, G.R., Hipólito, A.R., Quartau, R., Adena, K., Schaefer, J.M., 2015. Hazard potential of volcanic flank collapses raised by new megatsunami evidence. Science Advances 1, e1500456.CrossRefGoogle ScholarPubMed
Riegl, B., 1996. Corals of the South-West Indian Ocean IV. The Hard Coral Family Faviidae Gregory, 1900 (Scleractinia: Faviina). South African Association for Marine Biological Research: Oceanographic Research Institute Investigational Report 70. Oceanographic Research Institute, Durban.Google Scholar
Rommerskirchen, F., Condon, T., Mollenhauer, G., Dupont, L., Schefuss, E., 2011. Miocene to Pliocene development of surface and subsurface temperatures in the Benguela Current system. Paleoceanography 26, PA3216.CrossRefGoogle Scholar
Roos, B.W.H.P.J., Cadée, G.C., 2012. Trans-Atlantic rafting by the brooding reef coral Favia fragum on man-made flotsam. Marine Ecology Progress Series 445, 209218.Google Scholar
Samrock, L.K., Wartho, J.A., Hansteen, T.H., 2019. 40Ar-39Ar geochronology of the active phonolitic Cadamosto Seamount, Cape Verde. Lithos 344, 464481.CrossRefGoogle Scholar
Schindelin, J., Arganda-Carreras, I., Frise, E. Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., et al., 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676682.CrossRefGoogle ScholarPubMed
Seilacher, A., 1970. Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1, 3439.Google Scholar
Serralheiro, A., 1970. Geologia da Ilha de Maio (Cabo Verde). Junta de Investigações do Ultramar, Lisbon.Google Scholar
Serralheiro, A., 1976. A Geologia da Ilha de Santiago (Cabo Verde). Boletim do Museu e Laboratorio Mineralógico e Geológico da Faculdade de Ciências 14, 157369.Google Scholar
Serralheiro, A., Matos Alves, C.A., Macedo, , J.R. Silva, L.C., 1974. Nota preliminar sobre a geologia da Ilha da Boa Vista (Cabo Verde). Garcia de Orta, Série Geológica, Lisboa 1, 5360.Google Scholar
Spalding, M.D., Ravilious, C., Green, E.P., 2001. World Atlas of Coral Reefs. University of California Press, Oakland.Google Scholar
Teschima, M.M., Zilberberg, C., Nunes, F.L.D., 2022. Strong genetic differentiation demarks populations of Favia across biogeographic regions of the Atlantic Ocean. Coral Reefs 41, 523534.CrossRefGoogle Scholar
Thiel, M.E., 1928. Madreporaria. Beiträge zur Kenntnis der Meeresfauna Westafrikas 3, 251350.Google Scholar
Tisthammer, K.H., Richmond, R.H., 2018. Corallite skeletal morphological variation in Hawaiian Porites lobata. Coral Reefs 37, 445456.CrossRefGoogle Scholar
Torres, A.S., Soares, J.M.P., 1946. Formações sedimentares do Arquipélago de Cabo Verde. Memórias dos Serviços Geológicos de Portugal 3, 3397.Google Scholar
Umbgrove, J.H.F., 1950. Corals from the Putjangan beds (lower Pleistocene) of Java. Journal of Paleontology 24, 637651.Google Scholar
Veron, J., 1995. Corals in Space and Time. The Biogeography and Evolution of the Scleractinia. Cornell University Press, Ithaca, NY.Google Scholar
Veron, J.E.N., 2015. The potential of type species to destabilise the taxonomy of zooxanthellate Scleractinia. Zootaxa 4048, 433435.CrossRefGoogle ScholarPubMed
Veron, J., Stafford-Smith, M., DeVantier, L., Turak, E., 2015. Overview distribution patterns of zooxanthellate Scleractinia. Frontiers in Marine Science 1, 81.CrossRefGoogle Scholar
Woolsey, E.S., Byrne, , M. Baird, A.H., 2013. The effects of temperature on embryonic development and larval survival in two scleractinian corals. Marine Ecology Progress Series 493, 179184.CrossRefGoogle Scholar
Zazo, C., Goy, J.L., Dabrio, C.J., Soler, V., Hillaire-Marcel, C., Ghaleb, B., González-Delgado, J.A., Bardají, T., Cabero, A., 2007. Quaternary marine terraces on Sal Island (Cape Verde archipelago). Quaternary Science Reviews 26, 876893.CrossRefGoogle Scholar
Zazo, C., Goy, J.L., Hillaire-Marcel, C., Dabrio, C.J., González-Delgado, J.A., Cabero, A., Bardají, T., Ghaleb, B., Soler, V., 2010. Sea level changes during the last and present interglacials in Sal Island (Cape Verde archipelago). Global and Planetary Change 72, 302317.CrossRefGoogle Scholar
Zibrowius, H., Wirtz, P., Nunes, F.L., Hoeksema, B.W., Benzoni, F., 2014. Shallow-water scleractinian corals of Ascension Island, central South Atlantic. Journal of the Marine Biological Association of the United Kingdom 97, 713725.CrossRefGoogle Scholar
Zlatarski, V.N., Martínez-Estalella, N., 2018. Los escleractínios de Cuba. Instituto de Oceanología de Cuba, Havana.Google Scholar
Supplementary material: File

Reeb et al. supplementary material 1

Reeb et al. supplementary material
Download Reeb et al. supplementary material 1(File)
File 18.4 KB
Supplementary material: File

Reeb et al. supplementary material 2

Reeb et al. supplementary material
Download Reeb et al. supplementary material 2(File)
File 17.5 KB
Supplementary material: File

Reeb et al. supplementary material 3

Reeb et al. supplementary material
Download Reeb et al. supplementary material 3(File)
File 25.7 KB
Supplementary material: File

Reeb et al. supplementary material 4

Reeb et al. supplementary material
Download Reeb et al. supplementary material 4(File)
File 37.3 KB
Supplementary material: File

Reeb et al. supplementary material 5

Reeb et al. supplementary material
Download Reeb et al. supplementary material 5(File)
File 22.9 KB