Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T16:00:55.031Z Has data issue: false hasContentIssue false

Size Variation in the Rock Hyrax (Procavia capensis) and Late Quaternary Climatic Change in South Africa

Published online by Cambridge University Press:  20 January 2017

Richard G. Klein
Affiliation:
Department of Anthropology, Stanford University, Stanford, California, 94305-2145
Kathryn Cruz-Uribe
Affiliation:
Department of Anthropology and Quaternary Studies Program, Northern Arizona University, Box 15200, Flagstaff, Arizona, 86011

Abstract

The average adult size of the rock hyrax varies greatly across South Africa. Regression analysis suggests that mean hyrax size is more closely linked to precipitation than to temperature, probably because precipitation has a much greater impact on preferred hyrax food plants. The relationship between mean size and precipitation is curvilinear, such that size increases up to about 700 mm/annum and declines thereafter. This parallels a tendency for less palatable grasses to replace more palatable ones where rainfall exceeds 700 mm/annum. In conjunction with other indicators of past climate, hyrax size variation can be used to reconstruct precipitation history near deeply stratified South African late Quaternary sites, including Elands Bay Cave, Die Kelders Cave 1, and Nelson Bay Cave.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avery, D. M. (1982). Micromammals as palaeoenvironmental indicators and an interpretation of the late Quaternary in the southern Cape Province, South Africa. Annals of the South African Museum 85, 183374.Google Scholar
Avery, D. M. (1987). Late Pleistocene coastal environment of the southern Cape Province of South Africa: Micromammals from Klasies River Mouth. Journal of Archaeological Science 14, 405421.Google Scholar
Avery, D. M. (1990). Holocene climatic change in Southern Africa: The contribution of micromammals to its study. South African Journal of Science 86, 407412.Google Scholar
Avery, D. M. (1992). Micromammals and the environment of early pasto-ralists at Spoeg Rivier, western Cape Province, South Africa. South African Archaeological Bulletin 47, 116121.Google Scholar
Avery, D. M. (1993). Last interglacial and Holocene altithermal environments in South Africa and Namibia: Micromammalian evidence. Palaeo-geography, Palaeoclimatology, Palaeoecology 101, 221228.Google Scholar
Avery, G., Cruz-Uribe, K., Goldberg, P., Grine, F. E., Marean, C. W., Schwarcz, H. P., Thackeray, A. I., and Wilson, M. L. (in press). The 1992–93 excavations at the Die Kelders Middle and Late Stone Age Cave Site, South Africa. Journal of Field Archaeology. Google Scholar
Beaumont, P. B. (1981). The Heuningsneskrans Shelter. In “Guide to Archaeological Sites in the Northern and Eastern Transvaal“ (Voigt, E. A., Ed.), pp. 132145. Transvaal Museum, Pretoria.Google Scholar
Boshoff, A. F., Palmer, N. G., and Avery, G. (1990). Regional variation in the diet of martial eagles in the Cape Province, South Africa. South African Journal of Wildlife Research 20, 5768.Google Scholar
Boshoff, A. F., Palmer, N. G., Avery, G., Davies, R. A. G., and Jarvis, M. J. F. (1991). Biogeographical and topographical variation in the prey of black eagles in the Cape Province, South Africa. Ostrich 62, 5972.Google Scholar
Boshoff, A. F., Palmer, N. G., Vernon, C. J., and Avery, G. (1994). Comparison of the diet of crowned eagles in the Savanna and Forest Biomes of south-eastern South Africa. South African Journal of Wildlife Research 24, 2631.Google Scholar
Bothma, J. du P. (1971). Order Hyracoidea. In “The Mammals of Africa: An Identification Manual“ (Meester, J. and Setzer, H. W., Eds.), Part 12. Smithsonian Institution Press, Washington, DC. Google Scholar
Bousman, C. B. (1991). Holocene paleoecology and later Stone Age hunter-gatherer adaptations in the South African interior plateau. Southern Methodist University, Ph. D. dissertation.Google Scholar
Bousman, C. B., and Scott, L. (1994). Climate or overgrazing?: The palyno-logical evidence for vegetation change in the eastern Karoo. South African Journal of Science 90, 575578.Google Scholar
Brown, L. (1970). “African Birds of Prey.“ Houghton Mifflin, Boston.Google Scholar
Brown, W. L., and Wilson, E. O. (1956). Character displacement. Systematic Zoology 5, 4964.Google Scholar
Butzer, K. W. (1973). Geology of Nelson Bay Cave, Robberg, South Africa. South African Archaeological Bulletin 28, 97110.Google Scholar
Butzer, K. W. (1978). Sediment stratigraphy of the Middle Stone Age sequence at Klasies River Mouth, Tzitzikamma coast, South Africa. South African Archaeological Bulletin 33, 141151.Google Scholar
Butzer, K. W. (1984a). Late Quaternary environment in South Africa. In “Late Cainozoic Palaeoclimates of the Southern Hemisphere“ (Vogel, J. C., Ed.), pp. 235264. Balkema, Rotterdam.Google Scholar
Butzer, K. W. (1984b). Archeogeology and Quaternary environment in the interior of southern Africa. In “Southern African Prehistory and Paleoenvironments“ (Klein, R. G., Ed.), pp. 164. Balkema, Rotterdam.Google Scholar
Davies, R. A. G. (1989). Where dassies dare. Custos 17, 5357.Google Scholar
Davis, S. J. M. (1977). Size variation in the fox, Vulpes vulpes, in the Palaearctic region today, and in Israel during the late Quaternary. Journal of Zoology, London 182, 343351.Google Scholar
Davis, S. J. M. (1981). The effects of temperature change and domestication on the body size of late Pleistocene to Holocene mammals in Israel. Paleobiology 7, 101114.Google Scholar
Dayan, T., Simberloff, D., Tchernov, E., and Yom-Tov, Y. (1991). Calibrating the paleothermometer: Climate, communities, and the evolution of size. Paleobiology 17, 189199.CrossRefGoogle Scholar
Deacon, H. J. (1995). Two late Pleistocene–Holocene archaeological depositories from the southern Cape, South Africa. South African Archaeological Bulletin 50, 121131.Google Scholar
Deacon, H. J., and Gelejnse, V. B. (1988). The stratigraphy and sedimentol-ogy of the Main Site sequence, Klasies River, South Africa. South African Archaeological Bulletin 43, 514.Google Scholar
Deacon, H. J., and Shuurman, R. (1992). The origins of modern people: The evidence from Klasies River. In “Continuity or Replacement: Controversies in Homo sapiens Evolution“ (Brau¨er, G. and Smith, F. H., Eds.), pp. 121130. Balkema, Rotterdam.Google Scholar
Deacon, J. (1984). Later Stone Age people and their descendants in southern Africa. In “Southern African Prehistory and Paleoenvironments“ (Klein, R. G., Ed.), pp. 221328. Balkema, Rotterdam.Google Scholar
Deacon, J. (1988). The scale and timing of technological and environmental changes over the last 20,000 years in the southern Cape, South Africa. British Archaeological Reports International Series 405, 145162.Google Scholar
Deacon, J., and Lancaster, N. (1988). “Late Quaternary Palaeoenvironments of Southern Africa.“ Clarendon Press, Oxford.Google Scholar
De Vos, A. (1975). “Africa, the Devastated Continent?“ Junk, W., The Hague.Google Scholar
Dorst, J., and Dandelot, P. (1970). “A Field Guide to the Larger Mammals of Africa.“ Collins, London.Google Scholar
Dunbar, R. I. M. (1990). Environmental determinants of intraspecific variation in body weight in baboons (Papio spp.). Journal of Zoology, London 220, 157169.Google Scholar
Ellerman, J. R., Morrison-Scott, T. C. S., and Hayman, R. W. (1953). “Southern African Mammals 1758 to 1951: A Reclassification.“ British Museum (Natural History), London.Google Scholar
Fairall, N. (1980). Growth and age determination in the hyrax Procavia capensis. South Journal of Zoology 15, 1621.Google Scholar
Gargett, V. (1990). “The Black Eagle.“ Randburg (South Africa), Acorn Books.Google Scholar
Grine, F. E., and Klein, R. G. (1993). Late Pleistocene human remains from the Sea Harvest site, Saldanha Bay, South Africa. South African Journal of Science 89, 145152.Google Scholar
Grine, F. E., Klein, R. G., and Volman, T. P. (1991). Dating, archaeology and human fossils from the Middle Stone Age Layers of Die Kelders Cave 1, South Africa. Journal of Human Evolution 21, 363395.Google Scholar
Guilday, J. E. (1971). The Pleistocene history of the Appalachian mammal fauna. Virginia Polytechnic Research Institute Monograph 4, 233262.Google Scholar
Hendey, Q. B. (1974). The late Cenozoic Carnivora of the southwestern Cape Province. Annals of the South African Museum 63, 1369.Google Scholar
Hendey, Q. B., and Volman, T. P. (1986). Last Interglacial sea levels and coastal caves in the Cape Province, South Africa. Quaternary Research 25, 189198.Google Scholar
Hoeck, H. N. (1982). Population dynamics, dispersal and genetic isolation in two species of hyrax (Heterohyrax brucei and Procavia johnstoni) on habitat islands in the Serengeti. Zeitschrift für Tierpsychologie 59, 177210.Google Scholar
Inskeep, R. R. (1987). Nelson Bay Cave, Cape Province, South Africa: The Holocene levels. British Archaeological Reports International Series 357, 1485.Google Scholar
Jarvis, M. J. F., Currie, M. H., and Palmer, N. G. (1980). Food of crowned eagles in the Cape Province, South Africa. Ostrich 51, 213216.Google Scholar
Jerardino, A. (1995a). The problem with density values in archaeological analysis: A case study from Tortoise Cave, Western Cape, South Africa. South African Archaeological Bulletin 50, 2127.Google Scholar
Jerardino, A. (1995b). Late Holocene Neoglacial episodes in southern South America and southern Africa: A comparison. The Holocene 5, 361368.Google Scholar
Kaplan, J. (1990). The Umhlatuzana Rock Shelter sequence: 100,000 years of Stone Age history. Natal Museum Journal of Humanities 2, 194.Google Scholar
Keay, R. W. J. (1959). “Vegetation Map of Africa South of the Tropic of Cancer.“ Oxford University Press, Oxford.Google Scholar
Kingdon, J. (1971). “East African Mammals: An Atlas of Evolution in Africa.“ Vol. 1. Academic Press, London and New York.Google Scholar
Kingdon, J. (1974). “East African Mammals: An Atlas of Evolution in Africa.“ Vol. IIB. Academic Press, London and New York.Google Scholar
Klein, R. G. (1979). Paleoenvironmental and cultural implications of late Holocene archeological faunas from the Orange Free State and north-central Cape Province, South Africa. South African Archaeological Bulletin 34, 3449.Google Scholar
Klein, R. G. (1983). Palaeoenvironmental implications of Quaternary large mammals in the Fynbos Biome. South African National Scientific Programmes Reports 75, 116138.Google Scholar
Klein, R. G. (1984). Later Stone Age faunal samples from Heuningsnesk-rans Shelter (Transvaal) and Leopard's Hill Cave (Zambia). South African Archaeological Bulletin 39, 109116.Google Scholar
Klein, R. G. (1986). Carnivore size and Quaternary climatic change in southern Africa. Quaternary Research 26, 153170.Google Scholar
Klein, R. G. (1989). Why does skeletal part representation differ between smaller and larger bovids at Klasies River Mouth and other archeological sites. Journal of Archaeological Science 6, 363381.Google Scholar
Klein, R. G. (1991). Size variation in the Cape Dune Molerat (Bathyergus suillus) and Late Quaternary climatic change in the Southwestern Cape Province, South Africa. Quaternary Research 36, 243256.Google Scholar
Klein, R.G., and Cruz-Uribe, K. (1987). Large mammal and tortoise bones from Elands Bay Cave and nearby sites, Western Cape Province, South Africa. British Archaeological Reports International Series 332, 132163.Google Scholar
Klein, R.G., and Cruz-Uribe, K. (1993). The ecological and archaeological significance of rock hyrax bones from modern eagle roosts in South Africa. In “Skeletons in Her Cupboard: Festschrift for Juliette Clutton-Brock” (Clason, A., Payne, S., and Uerpmann, H.-P., Eds.). Oxbow Monographs 34, 117134.Google Scholar
Klein, R.G., Cruz-Uribe, K., and Beaumont, P. B. (1991). Environmental, ecological, and paleoanthropological implications of the late Pleistocene mammalian fauna from Equus Cave, northern Cape Province, South Africa. Quaternary Research 36, 94119.Google Scholar
Klein, R.G., and Scott, K. (1989). Glacial/interglacial size variation in fossil spotted hyenas (Crocuta crocuta) from Britain. Quaternary Research 32, 8895.Google Scholar
Kurtén, B. (1973). Geographic variation in size in the puma (Felis concolor). Commentationes Biologicae 63, /1/2.Google Scholar
Langvatn, R., and Aldon, S. D. (1986). Geographic clines in body weight of Norwegian red deer. A novel explanation of Bergmann's rule? Holarctic Ecology 9, 285293.Google Scholar
Lewontin, R. C. (1966). On the measurement of relative variability. Systematic Zoology 15, 141142.Google Scholar
Lundelius, E.L., Graham, R.W., Anderson, E., Guilday, J., Holman, J.A., Steadman, D.W., and Webb, S. D. (1983). Terrestrial vertebrate faunas. In “Late -Quaternary Environments of the United States, Vol. 1: The Late Pleistocene” (Porter, S. C., Ed.), pp. 311353. University of Minnesota Press, Minneapolis.Google Scholar
Mayr, E. (1963). “Animal Species and Evolution.” Belknap Press, Cambridge (Mass.) Google Scholar
Mazel, A. D. (1989). People making history: The last ten thousand years of hunter-gatherer communities in the Thukela Basin. Natal Museum Journal of Humanities 1, 1168.Google Scholar
McLachlan, G.R., and Liversidge, R. (1981). “Roberts Birds of South Africa.” C. Struik, Cape Town.Google Scholar
Meester, J. A.J., Rautenbach, I.L., Dippenaar, N.J., and Baker, C. M. (1986). Classification of southern African mammals. Transvaal Museum Monographs 3, 1359.Google Scholar
Parkington, J. E. (1987). Changing views of prehistoric settlement in the western Cape. British Archaeological Reports International Series 332, 423.Google Scholar
Parkington, J. E. (1988). The Pleistocene/Holocene transition in the Western Cape, South Africa: observations from Verlorenvlei. British Archaeological Reports International Series 405, 197206.Google Scholar
Parkington, J. E. (1990). A view from the south: Southern Africa before, during, and after the Last Glacial Maximum. In “The World at 18 000 BP. Volume 2: Low Latitudes” (Gamble, C. and Soffer, O., Eds.), pp. 214228. Unwin Hyman, London.Google Scholar
Parkington, J. E. (n.d.) From sequence to history: Excavations at Elands Bay Cave in context. Unpublished manuscript.Google Scholar
Partridge, T.C., Avery, D.M., Botha, G.A., Brink, J.S., Deacon, J., Herbert, R.S., Maud, R.R., Scholtz, A., Scott, L., Talma, A.S., and Vogel, J. C. (1990). Late Pleistocene and Holocene climatic change in Southern Africa. South African Journal of Science 86, 302306.Google Scholar
Purdue, J. R. (1980). Clinal variation of some mammals during the Holocene in Missouri. Quaternary Research 13, 242258.Google Scholar
Purdue, J. R. (1989). Changes during the Holocene in the size of white-tailed deer (Odocoileus virginianus) from Central Illinois. Quaternary Research 32, 307316.Google Scholar
Rightmire, G.P., and Deacon, H. J. (1991). Comparative studies of late Pleistocene human remains from Klasies River Mouth, South Africa. Journal of Human Evolution 20, 131156.Google Scholar
Robey, T. S. (1987). The stratigraphic and culture sequence at Tortoise Cave, Verlorenvlei. British Archaeological Reports International Series ii 332, 294325.Google Scholar
Roche, J. (1978). Denture et âge des damans de rochers. Mammalia 42, 97102.Google Scholar
Rutherford, M.C., and Westfall, R. H. (1986). Biomes of southern Africa—An objective categorisation. Memoirs of the Botanical Survey of South Africa 54, 198.Google Scholar
Sampson, C. G. (1970). The Smithfield Industrial Complex: Further field results. National Museum (Bloemfontein) Memoir 5, 1171.Google Scholar
Schulze, B. R. (1986). “Climate of South Africa: Part 8 (General Survey).” Pretoria, South African Weather Bureau.Google Scholar
Scott, L. (1987). Pollen analysis of hyena coprolites and sediments from Equus Cave, Taung, southern Kalahari (South Africa). Quaternary Research 28, 144156.Google Scholar
Scott, L., and Bousman, C. B. (1990). Palynological analysis of hyrax middens from Southern Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 76, 367379.Google Scholar
Schweitzer, F. R. (1979). Excavations at Die Kelders, Cape Province, South Africa: the Holocene deposits. Annals of the South African Museum 78, 101233.Google Scholar
Semken, H. A. (1983). Holocene mammalian biogeography and climatic change in the eastern and central United States. In “The Holocene” (Wright, H. E., Ed.), pp. 182207. University of Minnesota Press, Minneapolis/St. Paul.Google Scholar
Singer, R., and Wymer, J. J. (1982). “The Middle Stone Age at Klasies River Mouth in South Africa.” Chicago, The University of Chicago Press.Google Scholar
Skinner, J.D., and Smithers, R. H. N. (1990). “The Mammals of the Southern African Subregion.” The University of Pretoria, Pretoria.Google Scholar
Steyn, D., and Hanks, J. (1983). Age determination and growth in the hyrax Procavia capensis (Mammalia: Procaviidae). Journal of Zoology, London 201, 247257.Google Scholar
Steyn, P. (1987). “Birds of Prey of Southern Africa: Their Identification and Life Histories.” David Philip, Cape Town/Johannesburg.Google Scholar
Tankard, A. J. (1976). The stratigraphy of a coastal cave and its paleocli-matic significance. Palaeoecology of Africa 9, 151159.Google Scholar
Tchernov, E. (1968). “Succession of Rodent Faunas during the Upper Pleistocene of Israel.” Parey, Berlin/Hamburg.Google Scholar
Tchernov, E. (1979). Polymorphism, size trends and Pleistocene paleocli-matic response of the subgenus Sylvaemus (Mammalia: Rodentia) in Israel. Israel Journal of Zoology 28, 131159.Google Scholar
Tchernov, E. (1981). The impact of the Postglacial on the fauna of Southwest Asia. In “Beitrage zur Umweltgeschichte des Vorderen Orients” (Frey, W. and Uerpmann, H.-P., Eds.), pp. 197216. Reichert, Wiesbaden.Google Scholar
Tchernov, E. (1984). Faunal turnover and extinction rate in the Levant. In “Quaternary Extinctions: A Prehistoric Revolution” (Martin, P. S. and Klein, R. G., Eds.), pp. 528552. University of Arizona Press, Tucson.Google Scholar
Thackeray, A. K. (1989). Changing fashions in the Middle Stone Age: The stone artefact sequence from Klasies River main site, South Africa. African Archaeological Review 7, 3357.Google Scholar
Thackeray, A.I., and Kelly, A. J. (1988). A technological and typological analysis of Middle Stone Age assemblages antecedent to the Howieson's Poort at Klasies River main site. South African Archaeological Bulletin 43, 1526.Google Scholar
Thomas, O. (1892). On the species of the Hyracoidea. Proceedings of the Zoological Society of London 1892, 5076.Google Scholar
Tyson, P. D. (1986). “Climatic Change and Variability in Southern Africa.” Oxford University Press, Oxford.Google Scholar
Velleman, P. F. (1992). “Data Desk 4 Handbook.” Data Description Inc, Ithaca, NY.Google Scholar
Webley, L. (1992). Early evidence for sheep from Spoeg River Cave, Nama-qualand. Southern African Field Archaeology 1, 313.Google Scholar
Wilson, D.E., and Reeder, D. M. (1993). “Mammal Species of the World: A Taxonomic and Geographic Reference.” Smithsonian Institution Press, Washington.Google Scholar
Winterbottom, J. M. (1971). “An Introduction to Animal Ecology in Southern Africa.” Maskew Miller, Cape Town.Google Scholar
Yom-Tov, Y. (1993). Does the rock hyrax, Procavia capensis, conform with Bergmann's Rule? Zoological Journal of the Linnaean Society 108, 171177.Google Scholar