Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T23:10:10.246Z Has data issue: false hasContentIssue false

Reconstruction of past climate variability and ENSO-like fluctuations in the southern Gulf of California (Alfonso Basin) since the last glacial maximum

Published online by Cambridge University Press:  20 January 2017

Francisca Staines-Urías*
Affiliation:
Geological Survey of Denmark and Greenland—GEUS, Department of Marine Geology and Glaciology, Denmark Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement—CEREGE, France
Oscar González-Yajimovich
Affiliation:
Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada—UABC, Mexico, China
Luc Beaufort
Affiliation:
Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement—CEREGE, France
*
*Corresponding author at: Øster Voldgade 10, 1350 Copenhagen, K, Denmark. E-mail address:fsu@geus.dk, franciscastaines@gmail.com (F. Staines-Urías).

Abstract

Nannofossil assemblages from core MD02-2510 provide a ~ 22 ka record of past oceanographic variability in Alfonso Basin (Gulf of California, east subtropical Pacific). In this area, environmental conditions depend on a monsoonal system heavily influenced by changes in the location of the ITCZ and nearby atmospheric pressure centers. To reconstruct nutricline depth and ENSO-like variability, two ecological indexes were calculated based on the relative abundance of the three dominant coccolith species. The late glacial period is characterized by intensified wind-driven upwelling, high primary productivity and La Niña-like conditions. An environmental shift occurs during the glacial–interglacial transition, El Niño-like conditions intensify, nutricline deepens and surface productivity declines. The late Holocene is characterized by a persistent increase in nutricline depth and dominance of El Niño-like conditions. The fluctuations in the composition of the coccolith assemblages can be related to orbital-scale fluctuations in the average position of the ITCZ. However, while the ENSO-like signal that overprints the record varies in response to orbital forcing, on suborbital time scales the relation between ENSO-like conditions and the average position of the ITCZ and the North Pacific High changes, suggesting that the development of persistent El Niño-like conditions is strongly dependent on the specific climatic background.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguiñiga, S., Sanchez, A., Silverberg, N. (2010). Temporal variations of C, N, ∂13C, and ∂15N in organic matter collected by a sediment trap at Cuenca Alfonso, Bahía de La Paz, SW Gulf of California. Continental Shelf Research 30, 15 16921700. 10.1016/j.csr.2010.07.005 .CrossRefGoogle Scholar
Álvarez, M.C., Flores, J.A., Sierro, F.J., Molina-Cruz, A. (2010). The coccolithophore record for the last 11 000 years in the Gulf of California. Journal of Marine Systems 80, 3 184190. 10.1016/j.jmarsys.2009.10.008 .Google Scholar
Andruleit, H., Rogalla, U. (2002). Coccolithophores in surface sediments of the Arabian Sea in relation to environmental gradients in surface waters. Marine Geology 186, 505526. 10.1016/S0025-3227(02)00312-2.Google Scholar
Barron, J., Heusser, L., Herbert, T., Lyle, M. (2003). High-resolution climatic evolution of coastal northern California during the past 16,000 years. Paleoceanography 18, 1020 10.1029/2002PA000768 .CrossRefGoogle Scholar
Barron, J., Bukry, D., Dean, W.E. (2005). Paleoceanographic history of the Guaymas Basin, Gulf of California, during the past 15,000 years based on diatoms, silicoflagellates, and biogenic sediments. Marine Micropaleontology 56, 81102. 10.1016/j.marmicro.2005.04.001 .CrossRefGoogle Scholar
Barron, J.A., Metcalfe, S.E., Addison, J.A. (2012). Response of the North American monsoon to regional changes in ocean surface temperature. Paleoceanography 27, 3 10.1029/2011PA002235 .CrossRefGoogle Scholar
Barron, J.A., Bukry, D., Cheshire, H. (2014). Response of diatom and silicoflagellate assemblages in the central Gulf of California to regional climate change during the past 55 kyrs. Marine Micropaleontology 108, 2840. 10.1016/j.marmicro.2014.02.004 .Google Scholar
Beaufort, L., Dollfus, D. (2004). Automatic recognition of coccoliths by dynamical neural networks. Marine Micropaleontology 51, 57–73 10.1016/j.marmicro.2003.09.003 .CrossRefGoogle Scholar
Berger, A., Loutre, M.F. (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317. 10.1016/0277-3791(91)90033-Q .Google Scholar
Bollmann, J., Baumann, K.-H., Thierstein, H.R. (1998). Global dominance of Gephyrocapsa coccoliths in the late Pleistocene: selective dissolution, evolution, or global environmental change?. Paleoceanography 13, 517529. 10.1029/98PA00610 .CrossRefGoogle Scholar
Bordoni, S., Ciesielski, P.E., Johnson, R.H., Mc Noldy, B.D., Stevens, B. (2004). The low-level circulation of the North American Monsoon as revealed by QuikSCAT. Geophysical Research Letters 31, L10109 10.1029/2004GL020009 .CrossRefGoogle Scholar
Bouma, A.H. (2000). Coarse-grained and fine-grained turbidite systems as end member models: applicability and dangers. Marine and Petroleum Geology 17, 137–143 10.1016/S0264-8172(99)00020-3 .CrossRefGoogle Scholar
Brito-Castillo, L., Díaz-Castro, S., Salinas-Zavala, C.A., Douglas, A.V. (2003). Reconstruction of long-term winter stream flow in the Gulf of California continental watershed. Journal of Hydrology 278, 39–50 10.1016/S0022-1694(03)00131-8 .CrossRefGoogle Scholar
Broccoli, A.J., Dahl, K.A., Stouffer, R.J. (2006). Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters 33, 1 10.1029/2005GL024546 .CrossRefGoogle Scholar
Brunner, C.A., Ledbetter, M.T. (1987). Sedimentological and micropaleontological detection of turbidite muds in hemipelagic sequences: an example from the late Pleistocene levee of Monterey Fan, central California continental margin. Marine Micropaleontology 12, 223–239 10.1016/0377-8398(87)90022-3 .Google Scholar
Cheshire, H., Thurow, J. (2013). Novel approaches to a unifying hypothesis for the Northeast Pacific's glacial mode of operation. Paleoceanography 28, 115. 10.10.1002/palo.2031 .Google Scholar
Cheshire, H., Thurow, J., Nederbragt, A.J. (2005). Late Quaternary climate change record from two long sediment cores from Guaymas Basin, Gulf of California. Journal of Quaternary Science 20, 5 457469. 10.1002/jqs.944 .CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M. (2009). The Last Glacial Maximum. Science 7, 710–714 10.1126/science.1172873 .Google Scholar
Clement, A.C., Seager, R., Cane, M.A. (1999). Orbital controls on the El Nino/Southern Oscillation and the tropical climate. Paleoceanography 14, 4 441456. 10.1029/1999PA900013 .Google Scholar
Clement, A.C., Cane, M.A., Seager, R. (2001). An orbitally driven tropical source for abrupt climate change. Journal of Climate 14, 11 23692375. 10.1175/1520-0442(2001)014 .Google Scholar
Conroy, J.L., Overpeck, J.T., Cole, J.E., Shanahan, T.M., Steinitz-Kannan, M. (2008). Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quaternary Science Reviews 27, 11 11661180. 10.1016/j.quascirev.2008.02.015 .Google Scholar
Cortés, M.Y., Bollmann, J., Thierstein, H.R. (2001). Coccolithophore ecology at the HOT station ALOHA, Hawaii. Deep Sea Research, Part II 48, 1957–1981 10.1016/S0967-0645(00)00165-X .Google Scholar
Dittert, N., Baumann, K.H., Bickert, T., Henrich, R., Huber, R., Kinkel, H., Meggers, H. (1999). Carbonate dissolution in the deep-sea: methods, quantification and paleoceanographic application. Fischer, G., Wefer, G. Use of Proxies in Paleoceanography — Examples From the South Atlantic Springer, Berlin.255284.CrossRefGoogle Scholar
Douglas, R.G., Gorsline, D., Grippo, A., Granados, I., Gonzalez-Yajimovich, O. (2002). Holocene ocean-climate variations in Alfonso Basin, Gulf of California, Mexico. Proceedings of the Eighteenth PACLIM Workshop Technical Report vol. 68, No. 7-20, .Google Scholar
Douglas, R.G., Gonzalez-Yajimovich, O., Ledesma-Vazquez, J., Staines-Urías, F. (2007). Climate forcing, primary production and the distribution of Holocene biogenic sediments in the Gulf of California. Quaternary Science Reviews 26, 115–129 10.1016/j.quascirev.2006.05 .Google Scholar
Flores, J.A., Sierro, J.F., Francés, G., Vázquez, A., Zamarreño, I. (1997). The last 100,000 years in the western Mediterranean: sea surface water and frontal dynamics as revealed by coccolithophores. Marine Micropaleontology 29, 351–366 10.1016/S0377-8398(96)00029-1 .Google Scholar
Flores, J.A., Bàrcena, M.A., Sierro, F.J. (2000). Ocean-surface and wind dynamics in the Atlantic Ocean off Northwest Africa during the last 140,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 161, 3 459478. 10.1016/S0031-0182(00)00099-7 .CrossRefGoogle Scholar
Ford, H.L., Ravelo, A.C., Polissar, P.J. (2015). Reduced El Niño–Southern Oscillation during the Last Glacial Maximum. Science 347, 6219 255258. 10.1126/science.1258437 .Google Scholar
Frantz, B.R., Kashgarian, M., Coale, K.H., Foster, M.S. (2000). Growth rate and potential climate record from a rhodolith using 14C accelerator mass spectrometry. Limnology and Oceanography 45, 1773–1777 10.4319/lo.2000.45.8.1773 .Google Scholar
Ganeshram, R.S., Pedersen, T.F. (1998). Glacial–interglacial variability in upwelling and bioproductivity off NW Mexico: implications for Quaternary paleoclimate. Paleoceanography 13, 6 634645. 10.1029/98PA02508 .CrossRefGoogle Scholar
González-Yajimovich, O., Douglas, R.G., Gorsline, D.S. (2005). The preserved carbonate record in Holocene sediments of the Alfonso and Pescadero basins, Gulf of California, Mexico. Proceedings of the Geologists' Association 116, 315–330 10.1016/S0016-7878(05)80050-1 .Google Scholar
González-Yajimovich, O., Gorsline, D.S., Douglas, R.G. (2007). Frequency and sources of basin floor turbidites in Alfonso basin, Gulf of California, Mexico: products of slope failures. Sedimentary Geology 199, 91–105 10.1016/j.sedgeo.2005.09.025 .Google Scholar
Harrison, S.P.A., Kutzbach, J.E., Liu, Z., Bartlein, P.J., Otto-Bliesner, B., Muhs, D., Prentice, I.C., Thompson, R.S. (2003). Mid-Holocene climates of the Americas: a dynamical response to changed seasonality. Climate Dynamics 20, 663–688 10.1007/s00382-002-0300-6 .Google Scholar
Haug, H.G., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U. (2001). Southward migration of the intertropical convergence zone through the Holocene. Science 17, 1304–1308 10.1126/science.1059725 .Google Scholar
Herbert, T.D., Schuffert, J.D., Andreasen, D., Heusser, L., Lyle, M., Mix, A., Ravelo, A.C., Stott, L.D., Herguera, J.C. (2001). Collapse of the California Current during glacial maxima linked to climate change on land. Science 293, 5527 7176. 10.1126/science.1059209 .Google Scholar
Kahru, M., Marinone, S.G., Lluch-Cota, S.E., Parés-Sierra, A., Greg Mitchell, B. (2004). Ocean-color variability in the Gulf of California: scales from days to ENSO. Deep Sea Research Part II: Topical Studies in Oceanography 51, 1 139146. 10.1016/j.dsr2.2003.04.001 .CrossRefGoogle Scholar
Kennett, D.J., Kennett, J.P., Erlandson, J.M., Cannariato, K.G. (2007). Human responses to Middle Holocene climate change on California's Channel Islands. Quaternary Science Reviews 26, 351–367 10.1016/j.quascirev.2006.07.019 .CrossRefGoogle Scholar
Kirby, M.E., Poulsen, C.J., Lund, S.P., Patterson, W.P., Reidy, L., Hammond, D.E. (2004). Late Holocene lake level dynamics inferred from magnetic susceptibility and stable oxygen isotope data: Lake Elsinore, southern California (USA). Journal of Paleolimnology 31, 3 275293. 10.1023/B:JOPL.0000021710.39800.f6 .CrossRefGoogle Scholar
Kitoh, A., Murakami, S. (2002). Tropical Pacific climate at the mid–Holocene and the Last Glacial Maximum simulated by a coupled ocean–atmosphere general circulation model. Paleoceanography 17, 3 19-119-13. 10.1029/2001PA000724 .Google Scholar
Knappertsbusch, M. (1993). Geographic distribution of living and Holocene coccolithophores in the Mediterranean Sea. Marine Micropaleontology 21, 219–247 10.1016/0377-8398(93)90016-Q .Google Scholar
Koutavas, A., Joanides, S. (2012). El Niño–Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography 27, 4 10.1029/2012PA002378 .Google Scholar
Koutavas, A., Lynch-Stieglitz, J., Marchitto, T., Sachs, J. (2002). El Niño-like pattern in ice age tropical pacific sea surface temperature. Science 12, 226–230 10.1126/science.1072376 .Google Scholar
Lambeck, K., Purcell, A., Zhao, J., Svensson, N.O. (2010). The Scan dinavian ice sheet: from MIS 4 to the end of the Last Glacial Maximum. Boreas 39, 2 410435. 10.1111/j.1502-3885.2010.00140.x .CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, 261285. 10.1051/0004-6361:20041335 .CrossRefGoogle Scholar
Lavín, M.F., Palacios-Hernández, E., Cabrera, C. (2003). Sea surface temperature anomalies in the Gulf of California. Geofísica Internacional 42, 363–375.CrossRefGoogle Scholar
Lavín, M.F., Castro, R., Beier, E., Cabrera, C., Godínez, V.M., Amador–Buenrostro, A. (2014). Surface circulation in the Gulf of California in summer from surface drifters and satellite images (2004–2006). Journal of Geophysical Research, Oceans 119, 7 42784290. 10.1002/2013JC009345 .CrossRefGoogle Scholar
Leduc, G., Schneider, R., Kim, J.H., Lohman, G. (2010). Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleolthermometry. Quaternary Science Reviews 29, 989–1004 10.1016/j.quascirev.2010.01.004 .CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E. (2005). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1 10.1029/2004PA001071 .Google Scholar
Liu, Z., Kutzbach, J., Wu, L. (2000). Modeling climate shift of El Niño variability in the Holocene. Geophysical Research Letters 27, 15 22652268. 10.1029/2000GL011452 .Google Scholar
Liu, Z., Brady, E., Lynch-Stieglitz, J. (2003a). Global ocean response to orbital forcing in the Holocene. Paleoceanography 18, 2 1041 10.1029/2002PA000819 .Google Scholar
Liu, Z., Otto-Bliesner, B., Kutzbach, J.E., Li, L., Shield, C. (2003b). Coupled climate simulations of the evolution of global monsoons in the Holocene. Journal of Climate 16, 2472–2490.Google Scholar
Lluch-Cota, D.B., Wooster, W.S., Hare, S.R. (2001). Sea surface temperature variability in coastal areas of the northeastern Pacific related to the El Niño–Southern Oscillation and the Pacific Decadal Oscillation. Geophysical Research Letters 28, 2029–2032 10.1029/2000GL012429 .Google Scholar
Malinverno, E., Prahl, F.G., Popp, B.N., Ziveri, P. (2008). Alkenone abundance and its relationship to the coccolithophore assemblage in Gulf of California surface waters. Deep Sea Research, Part I 55, 1118–1130 10.1016/j.dsr.2008.04.007 .CrossRefGoogle Scholar
Marchitto, T.M., Muscheler, R., Ortiz, J.D., Carriquiry, J.D., van Geen, A. (2010). Dynamical response of the tropical Pacific Ocean to solar forcing during the early Holocene. Science 330, 13781381. 10.1126/science.1194887 .Google Scholar
Martínez, I., Keigwin, L., Barrows, T.T., Yokoyama, Y., Southon, J. (2003). La Niña–like conditions in the eastern equatorial Pacific and a stronger Choco jet in the northern Andes during the last glaciation. Paleoceanography 18, 2 10.1029/2002PA000877 .CrossRefGoogle Scholar
McClymont, E.L., Ganeshram, R., Pitchevin, L.E., Talbot, H.M., van Dongen, B.E., Thunell, R.C., Haywood, A.M., Singarayer, J.S., Valdes, P.J. (2012). Sea-surface temperature records of Termination 1 in the Gulf of California: challenges for seasonal and interannual analogues of tropical Pacific climate change. Paleoceanography 27, PA2202 10.1029/2011PA002226 .Google Scholar
McIntyre, A., , A.W., Roche, M.B. (1970). Modern Pacific Coccolithophorida: a paleontological thermometer. Transactions. New York Academy of Sciences 32, 720–731.CrossRefGoogle ScholarPubMed
Menking, K.M., Anderson, R.Y. (2003). Contributions of La Niña and El Niño to middle Holocene drought and late Holocene moisture in the American Southwest. Geology 31, 937–940 10.1130/G19807.1 .Google Scholar
Mertens, K.N.J.M., Lynn, M., Aycard, M., Lin, H.-L., Louwye, S. (2009). Coccolithophores as palaeoecological indicators for shifts of the ITCZ in the Cariaco Basin during the late Quaternary. Journal of Quaternary Science 24, 159–174 10.1002/jqs.1194 .Google Scholar
Molfino, B., McIntyre, A. (1990). Nutricline variation in the equatorial Atlantic coincident with the Younger Dryas. Paleoceanography 5, 997–1008 10.1029/PA005i006p00997 .CrossRefGoogle Scholar
Monreal-Gómez, M.A., Molina-Cruz, A., Salas-de-León, D.A. (2001). Water masses and cyclonic circulation in Bay of La Paz, Gulf of California, during June 1998. Journal of Marine Systems 30, 3 305315. 10.1016/S0924-7963(01)00064-1 .Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M. (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 6912 162165. 10.1038/nature01194 .Google Scholar
Okada, H., Honjo, S. (1973). The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Research and Oceanographic Abstracts 20, 355–364 10.1016/0011-7471(73)90059-4 .Google Scholar
Okada, H., Honjo, S. (1975). Distribution of coccolithophores in marginal seas along the western Pacific Ocean and in the Red Sea. Marine Biology 31, 271–285 10.1007/BF00387154 .CrossRefGoogle Scholar
Okada, H., Matsuoka, M. (1996). Lower photic nannoflora as an indicator of the late Quaternary monsoonal palaeo-record in the tropical Indian Ocean. Moguilevsky, A., Whatley, R. Proceedings of the International Conference on ODP and the Marine Biosphere, 231–245 Aberystwyth, April 1994, University of Wals, Aberyswyth Press.Google Scholar
Okada, H., McIntyre, A. (1979). Seasonal distribution of modern coccolithophores in the western North Atlantic Ocean. Marine Biology 54, 319–328 10.1007/BF00395438 .CrossRefGoogle Scholar
Otto-Bliesner, B.L., Brady, E.C., Shin, S., Liu, Z., Shields, C. (2003). Modeling El Niño and its tropical teleconnections during the last glacial–interglacial cycle. Geophysical Research Letters 30, 2198 10.1029/2003GL018553 .CrossRefGoogle Scholar
Otto-Bliesner, B.L., Brady, E.C., Clauzet, G., Tomas, R., Levis, S., Kothavala, Z. (2006). Last glacial maximum and Holocene climate in CCSM3. Journal of Climate 19, 11 25262544. 10.1175/JCLI3748.1 .Google Scholar
Pahnke, K., Sachs, J.P., Keigwin, L.D., Timmermann, A., Xie, S.P. (2007). Eastern tropical Pacific hydrologic changes during the past 27,000 years from D/H ratios in alkenones. Paleoceanography 22, PA4214 10.1029/2007PA001468 .Google Scholar
Paillard, D., Labeyrie, L., Yiou, P. (1996). Macintosh program performs time–series analysis. Eos, Transactions American Geophysical Union 77, 39 379 10.1029/96EO00259 .Google Scholar
Pegau, W.S., Boss, E., Martínez, A. (2002). Ocean color observations of eddies during the summer in the Gulf of California. Geophysical Research Letters 29, 9 6-16-3. 10.1029/2001GL014076 .Google Scholar
Pérez-Cruz, L. (2013). Hydrological changes and paleoproductivity in the Gulf of California during middle and late Holocene and their relationship with ITCZ and North American Monsoon variability. Quaternary Research 79, 2 138151. 10.1016/j.yqres.2012.11.007 .Google Scholar
Pérez-Cruz, L. (2006). Climate and ocean variability during the middle and late Holocene recorded in laminated sediments from Alfonso Basin, Gulf of California, Mexico. Quaternary Research 65, 401–410 10.1016/j.yqres.2006.02.003 .Google Scholar
Price, A.M., Mertens, K.N., Pospelova, V., Pedersen, T.F., Ganeshram, R.S. (2013). Late Quaternary climatic and oceanographic changes in the Northeast Pacific as recorded by dinoflagellate cysts from Guaymas Basin, Gulf of California (Mexico). Paleoceanography 28, 1 200212.CrossRefGoogle Scholar
Pride, C., Thunell, R., Sigman, D., Keigwin, L., Altabet, M., Tappa, E. (1999). Nitrogen isotopic variations in the Gulf of California since the last deglaciation: response to global climate change. Paleoceanography 14, 3 397409. 10.1029/1999PA900004 .CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E. (2009). IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 4 11111150.CrossRefGoogle Scholar
Robles, J.M., Marinone, S.G. (1987). Seasonal and interannual thermohaline variability in the Guaymas Basin of the Gulf of California. Continental Shelf Research 7, 7 715733. 10.1016/0278-4343(87)90013-6 .Google Scholar
Ruddiman, W.F., Glover, L.K. (1972). Vertical mixing of ice-rafted volcanic ash in North Atlantic sediments. Geological Society of America Bulletin 83, 9 28172836. 10.1130/00167606(1972)83[2817:VMOIVA]2.0.CO;2 .Google Scholar
Sancetta, C. (1995). Diatoms in the Gulf of California: seasonal flux patterns and the sediment record for the last 15,000 years. Paleoceanography 10, 67–84 10.1029/94PA02796 .Google Scholar
Sánchez-Velasco, L., Beier, E., Avalos-García, C., Lavín, M.F. (2006). Larval fish assemblages and geostrophic circulation in Bahía de La Paz and the surrounding southwestern region of the Gulf of California. Journal of Plankton Research 28, 11 10811098. 10.1093/plankt/fbl040 .Google Scholar
Santamaría-del-Angel, E., Alvarez-Borrego, S., Müller-Karger, F.E. (1994). The 1982–1984 El Niño in the Gulf of California as seen in coastal zone color scanner imagery. Journal of Geophysical Research 99, 7423–7431 10.1029/93JC02147 .Google Scholar
Shulmeister, J., Lees, B.G. (1995). Pollen evidence from tropical Australia for the onset of an ENSO-dominated climate at c. 4000 BP. The Holocene 5, 10-18 10.1177/095968369500500102 .Google Scholar
Silverberg, N., Bahena, F.A., Mucci, A. (2014). Time-series measurements of settling particulate matter in Alfonso Basin, La Paz Bay, southwestern Gulf of California. Continental Shelf Research 84, 169–187 10.1016/j.csr.2014.05.005 .Google Scholar
Staines-Urías, F., Douglas, R.G. (2009). Environmental and intraspecific dimorphism effects on the stable isotope composition of deep-sea benthic foraminifera from the Southern Gulf of California, Mexico. Marine Micropaleontology 71, 1 8095. 10.1016/j.marmicro.2009.01.007 .Google Scholar
Staines-Urías, F., Douglas, R.G., Gorsline, D. (2009). Oceanographic variability in the southern Gulf of California over the past 400 years: evidence from faunal and isotopic records from planktic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 284, 337–354 10.1016/j.palaeo.2009.10.016 .CrossRefGoogle Scholar
Stott, L., Poulsen, C., Lund, S., Thunell, R. (2002). Super ENSO and global climate oscillations at millennial time scales. Science 297, 5579 222226. 10.1126/science.1071627 .Google Scholar
Stuiver, M., Reimer, P.J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215–230.Google Scholar
Takahashi, K., Okada, H. (2000). The paleoceanography for the last 30,000 years in the southeastern Indian Ocean by means of calcareous nannofossils. Marine Micropaleontology 40, 83–103 10.1016/S0377-8398(00)00033-5 .Google Scholar
Thunell, R.C., Pride, C.J., Tappa, E., Muller-Karger, F.E. (1994). Biogenic silica fluxes and accumulation rates in the Gulf of California. Geology 22, 303–306 10.1130/0091-7613(1994)022 .Google Scholar
Thunell, R.C., Pride, C.J., Ziveri, P., Muller-Karger, F.E., Sancetta, C., Murray, D. (1996). Plankton response to physical forcing in the Gulf of California. Journal of Plankton Research 18, 2017–2026 10.1093/plankt/18.11.2017 .CrossRefGoogle Scholar
Timmermann, A., Justino, F., Jin, F.-F., Krebs, U., Goosse, H. (2004). Surface temperature control in the North and tropical Pacific during the last glacial maximum. Climate Dynamics 23, 353–370 10.1007/s00382-004-0434-9 .Google Scholar
Timmermann, A., An, S.I., Krebs, U., Goosse, H. (2005). ENSO suppression due to weakening of the North Atlantic thermohaline circulation. Journal of Climate 18, 16 31223139. 10.1175/JCLI3495.1 .Google Scholar
Timmermann, A., Okumura, Y., An, S.I., Clement, A., Dong, B., Guilyardi, E.A. Hu, Jungclaus, J.H., Renold, M., Stocker, T.F., Stouffer, R.J., Sutton, R., Xie, S.-P., Yin, J. (2007). The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. Journal of Climate 20, 19 48994919. 10.1175/JCLI4283.1 .Google Scholar
Tudhope, A.W., Chilcott, C.P., McCulloch, M.T., Cook, E.R., Chappell, J., Ellam, R.M., Lea, D.W., Lough, J.M., Shimmield, G.B. (2001). Variability in the El Niño–Southern Oscillation through a Glacial–Interglacial Cycle. Science 291, 1511–1517 10.1126/science.1057969 .Google Scholar
Urcádiz-Cázares, F.J. (2005). Flujos de cocolitos (cocolitóforos) y su aporte de CaCO3 evaluado con trampa de sedimentos en la Cuenca Alfonso (Bahía de La Paz), Golfo de California, México. (Bachelor Thesis)Universidad Autónoma de Baja California Sur, (62 pp.).Google Scholar
Waelbroeck, C., Duplessy, J.C., Michel, E., Labeyrie, L., Paillard, D., Duprat, J. (2001). The timing of the last deglaciation in North Atlantic climate records. Nature 412, 6848 724727. 10.1038/35089060 .Google Scholar
Wang, Y., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M.J., Dykoski, C.A., Li, X. (2005). The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 854857. 10.1126/science.1106296 .Google Scholar
Wang, C., Fiedler, P.C. (2006). ENSO variability and the eastern tropical Pacific: a review. Progress in Oceanography 69, 2 239266. 10.1016/j.pocean.2006.03.004 .Google Scholar
Yuan, D.X., Cheng, H., Edwards, R.L., Dykoski, C.A., Kelly, M.J., Zhang, M.L., Qing, J.M., Lin, Y.S., Wang, Y.J., Wu, J.Y., Dorale, J.A., An, Z.S., Cai, Y.J. (2004). Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304, 5670 575578. 10.1126/science.1091220 .CrossRefGoogle ScholarPubMed
Zheng, W., Braconnot, P., Guilyardi, E., Merkel, U., Yu, Y. (2008). ENSO at 6ka and 21ka from ocean-atmosphere coupled model simulations. Climate Dynamics 30, 7-8 745762. 10.1007/s00382-007-0320-3 .Google Scholar
Ziveri, P., Thunell, R.C. (2000). Coccolithophore export production in Guaymas Basin, Gulf of California: response to climate forcing. Deep Sea Research, Part II 47, 2073–2100 10.1016/S0967-0645(00)00017-5 .Google Scholar
Ziveri, P., Rutten, A., De Lange, G.J., Thomson, J., Corselli, C. (2000). Present-day coccolith fluxes recorded in central eastern Mediterranean sediment traps and surface sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 158, 175-195 10.1016/S0031-0182(00)00049-3 .Google Scholar
Supplementary material: File

Staines-Urías et al. supplementary material

Supplementary Material

Download Staines-Urías et al. supplementary material(File)
File 4.2 KB