Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T04:25:20.651Z Has data issue: false hasContentIssue false

Reconstructing Saharan dust transport to the Eastern Mediterranean Sea during the last 180 ka using endmember modelling of grain size data

Published online by Cambridge University Press:  06 January 2020

Sarah Beuscher*
Affiliation:
Institut für Geophysik und Geologie, Universität Leipzig, Leipzig, Germany
Werner Ehrmann
Affiliation:
Institut für Geophysik und Geologie, Universität Leipzig, Leipzig, Germany
Stefan Krüger
Affiliation:
Institut für Geophysik und Geologie, Universität Leipzig, Leipzig, Germany
Gerhard Schmiedl
Affiliation:
Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany
*
*Corresponding author e-mail address: sarahbeuscher@gmx.de (S. Beuscher).

Abstract

Endmember modelling on the terrigenous silt fraction of nine marine sediment cores spanning up to 180,000 years reveals the influx of North African dust into the Eastern Mediterranean Sea. The dust grain size modes decrease with transport distance, from >50 µm off the African coast to ca. 30 µm in the Aegean Sea. The dust signal is strongly influenced by hydrological changes in northern Africa. Changes from arid to humid periods are documented in the grain size data of all cores. The climatic signal gets weaker with growing distance from the source and close to large fluvial sediment sources such as the Nile. Frequency and wavelet analyses show a strong orbital precession signal that is known to trigger the migration of the monsoonal rain belt in northern Africa. The influence of climate changes on suborbital time scales on dust influx is less distinct, but Dansgaard-Oeschger interstadials and Heinrich-like events are documented in some cores. In the sediment core closest to the source, three endmembers represent one or more dust sources in northern Africa. With growing distance from the source, the three modes cannot be separated anymore and appear as one multimodal dust endmember.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ball, J., 1939. Contributions to the Geography of Egypt. Government Press, Cairo.Google Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., Hawkesworth, C.J., 2003. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, 31813199.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., 2000. Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean, as evident from speleothems, Soreq cave, Israel. Chemical Geology 169, 145156.CrossRefGoogle Scholar
Bar-Or, R., Erlick, C., Gildor, H., 2008. The role of dust in glacial–interglacial cycles. Quaternary Science Reviews 27, 201208.CrossRefGoogle Scholar
Beuscher, S., Krüger, S., Ehrmann, W., Schmiedl, G., Milker, Y., Arz, H., Schulz, H., 2017. End-member modelling as a tool for climate reconstruction—an Eastern Mediterranean case study. PLoS ONE 12, e0185136.CrossRefGoogle ScholarPubMed
Blanchet, C.L., Tjallingii, R., Frank, M., Lorenzen, J., Reitz, A., Brown, K., Feseker, T., Brückmann, W., 2013. High- and low-latitude forcing of the Nile River regime during the Holocene inferred from laminated sediments of the Nile deep-sea fan. Earth and Planetary Science Letters 364, 98110.CrossRefGoogle Scholar
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, , 2013. Clouds and aerosols. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. (Eds.), The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
Bout-Roumazeilles, V., Combourieu-Nebout, N., Desprat, S., Siani, G., Turon, J.-L., Essallami, L., 2013. Tracking atmospheric and riverine terrigenous supplies variability during the last glacial and the Holocene in central Mediterranean. Climate of the Past 9, 10651087.CrossRefGoogle Scholar
Calvert, S.E., Fontugne, M.R., 2001. On the late Pleistocene–Holocene sapropel record of climatic and oceanographic variability in the eastern Mediterranean. Paleoceanography 16, 7894.CrossRefGoogle Scholar
Chester, R., Baxter, G.G., Behairy, A.K.A., Connor, K., Cross, D., Elderfield, H., Padgham, R.C., 1977. Soil-sized eolian dust from the lower troposphere of the Eastern Mediterranean Sea. Marine Geology 24, 201217.CrossRefGoogle Scholar
Claussen, M., Bathiany, S., Brovkin, V., Kleinen, T., 2013. Simulated climate–vegetation interaction in semi-arid regions affected by plant diversity. Nature Geoscience 6, 954958.CrossRefGoogle Scholar
Coudé-Gausssen, G., 1988. Contribution à l’étude sédimentologique des poussières sahariennes et à leur identification dans les sédiments continentaux et marins. Bulletin de la Société Géologique de France 6, 10631072.CrossRefGoogle Scholar
Coudé-Gausssen, 1989. Local, proximal and distal Saharan dusts: characterization and contribution to the sedimentation. In: Leinen, M., Sarntheim, M. (Eds.), Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Kluwer Academic, Dordrecht, Netherlands, pp. 339358.CrossRefGoogle Scholar
Cramp, A., O'Sullivan, G., 1999. Neogene sapropels in the Mediterranean. a review. Marine Geology 153, 1128.CrossRefGoogle Scholar
d'Almeida, G., 1987. On the variability of desert aerosol radiative characteristics. Journal of Geophysical Research 92 30173026.CrossRefGoogle Scholar
d'Almeida, G., Schütz, L., 1983. Number, mass and volume distributions of mineral aerosol and soils of the Sahara. Journal of Climate and Applied Meteorology 22, 233243.2.0.CO;2>CrossRefGoogle Scholar
Drake, N.A., Blench, R.M., Armitage, S.J., Bristow, C.S., White, K.H., 2011. Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proceedings of the National Academy of Sciences USA 108, 458462.CrossRefGoogle ScholarPubMed
Drake, N.A., Breeze, P., Parker, A., 2013. Palaeoclimate in the Saharan and Arabian Deserts during the Middle Palaeolithic and the potential for hominin dispersals. Quaternary International 300, 4861.CrossRefGoogle Scholar
Duce, R.A., 1995. Source, distributions, and fluxes of mineral aerosols and their relationship to climates. In: Charlson, R.J., Heintzenberg, J. (Eds.), Aerosol Forcing of Climate. Wiley, London, pp. 4372.Google Scholar
Egerer, S., Claussen, M., Reick, C., 2018. Rapid increase in simulated North Atlantic dust deposition due to fast change of northwest African landscape during the Holocene. Climate of the Past 14, 10511066.CrossRefGoogle Scholar
Ehrmann, W., Schmiedl, G., Beuscher, S., Krüger, S., 2017. Intensity of African Humid Periods estimated from Saharan dust fluxes. PLoS ONE 12, e0170989.CrossRefGoogle ScholarPubMed
Ehrmann, W., Schmiedl, G., Hamann, Y., Kuhnt, T., Hemleben, C., Siebel, W., 2007. Clay minerals in late glacial and Holocene sediments of the northern and southern Aegean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 249, 3657.CrossRefGoogle Scholar
Ehrmann, W., Schmiedl, G., Seidel, M., Krüger, S., Schulz, H., 2016. A distal 140 kyr sediment record of Nile discharge and East African monsoon variability. Climate of the Past 12, 713727.CrossRefGoogle Scholar
Ehrmann, W., Seidel, M., Schmiedl, G., 2013. Dynamics of Late Quaternary North African Humid Periods documented in the clay mineral record of central Aegean Sea sediments. Global and Planetary Change 107, 186195.CrossRefGoogle Scholar
Emeis, K.-C., Sakamoto, T., Wehausen, R., Brumsack, H.-J., 2000. The sapropel record of the Eastern Mediterranean Sea—results of Ocean Drilling Program Leg 160. Palaeogeography, Palaeoclimatology, Palaeoecology 158, 371395.CrossRefGoogle Scholar
Emeis, K.-C., Schulz, H., Struck, U., Rossignol-Strick, M., Erlenkeuser, H., Howell, M.W., Kroon, D., et al. , 2003. Eastern Mediterranean surface water temperatures and δ18O composition during deposition of sapropels in the late Quaternary. Paleoceanography 18, 371395.CrossRefGoogle Scholar
Engelstaedter, S., Tegen, I., Washington, R., 2006. North African dust emissions and transport. Earth-Science Reviews 79, 73100.CrossRefGoogle Scholar
Gallego-Torres, D., Martinez-Ruiz, F., Lange, G.J. de, Jimenez-Espejo, F.J., Ortega-Huertas, M., 2010. Trace-elemental derived paleoceanographic and paleoclimatic conditions for Pleistocene Eastern Mediterranean sapropels. Palaeogeography, Palaeoclimatology, Palaeoecology 293, 7689.CrossRefGoogle Scholar
Ganor, E., Foner, H.A., 1996. The mineralogical and chemical properties and the behaviour of aeolian Saharan dust over Israel. In: Guerzoni, S., Chester, R. (Eds.), The Impact of Desert Dust across the Mediterranean. Springer, Dordrecht, pp. 163172.CrossRefGoogle Scholar
Ganor, E., Mamane, Y., 1982. Transport of Saharan dust across the eastern Mediterranean. Atmospheric Environment (1967) 16, 581587.CrossRefGoogle Scholar
Gasse, F., 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, 189211.CrossRefGoogle Scholar
Ginoux, P., Prospero, J., Torres, O., Chin, M., 2004. Long-term simulation of dust distribution with the GOCART model: correlation with the North Atlantic Oscillation. Environmental Modelling & Software 19, 113128.CrossRefGoogle Scholar
Goudie, A.S., Middleton, N.J., 2001. Saharan dust storms: nature and consequences. Earth-Science Reviews 56, 179204.CrossRefGoogle Scholar
Goudie, A.S., Middleton, N.J. (Eds.), 2006. Desert Dust in the Global System. Springer.Google Scholar
Grant, K.M., Grimm, R., Mikolajewicz, U., Marino, G., Ziegler, M., Rohling, E.J., 2016. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes. Quaternary Science Reviews 140, 125141.CrossRefGoogle Scholar
Grant, K.M., Rohling, E.J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Ramsey, C.B., Satow, C., Roberts, A.P., 2012. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744747.CrossRefGoogle ScholarPubMed
Grant, K.M., Rohling, E.J., Westerhold, T., Zabel, M., Heslop, D., Konijnendijk, T., Lourens, L., 2017. A 3 million year index for North African humidity/aridity and the implication of potential pan-African Humid Periods. Quaternary Science Reviews 171, 100118.CrossRefGoogle Scholar
Grobe, H., Sieger, H., Diepenbroek, M., 2003. Geographic Information System PanMap including Geographical. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.Google Scholar
Guerzoni, S., Chester, R., Dulac, F., Herut, B., Loÿe-Pilot, M.-D., Measures, C., Migon, C., et al. , 1999. The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Progress in Oceanography 44, 147190.CrossRefGoogle Scholar
Guerzoni, S., Molinaroli, E., Chester, R., 1997. Saharan dust inputs to the W. Mediterranean Sea: depositional patterns, geochemistry and sedimentological implications. Deep-Sea Research 44, 631654.Google Scholar
Guieu, C., Loye-Pilot, M.D., Ridame, C., Thomas, C., 2002. Chemical characterization of the Saharan dust end-member: some biogeochemical implications for the western Mediterranean Sea. Journal of Geophysical Research 107(D15), 389.CrossRefGoogle Scholar
Hamann, Y., Ehrmann, W., Schmiedl, G., Krüger, S., Stuut, J.-B., Kuhnt, T., 2008. Sedimentation processes in the Eastern Mediterranean Sea during the Late Glacial and Holocene revealed by end-member modelling of the terrigenous fraction in marine sediments. Marine Geology 248, 97114.CrossRefGoogle Scholar
Hamann, Y., Ehrmann, W., Schmiedl, G., Kuhnt, T., 2009. Modern and late Quaternary clay mineral distribution in the area of the SE Mediterranean Sea. Quaternary Research 71, 453464.CrossRefGoogle Scholar
Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Palaeontological Statistics Package for Education and Data Analysis 4. https://folk.uio.no/ohammer/past/, 28.03.2018Google Scholar
Harrison, S.P., Kohfeld, K.E., Roelandt, C., Claquin, T., 2001. The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Science Reviews 54, 4380.CrossRefGoogle Scholar
Hemleben, C., Hoernle, K., Jørgensen, B.B., Roether, W., 2003. Ostatlantik–Mittelmeer–Schwarzes Meer, Cruise No. 51, 12 September–28 December 2001, METEOR-Berichte, Universität Hamburg, 03-01.Google Scholar
Hieke, W., Hemleben, C., Linke, P., Türkay, M., Weikert, H., 1999. Mittelmeer 1998/99, Cruise No. 40, 28 October 1997–10 February 1998: METEOR-Berichte, Universität Hamburg 99-2.Google Scholar
Hoffmann, D.L., Rogerson, M., Spötl, C., Luetscher, M., Vance, D., Osborne, A.H., Fello, N.M., Moseley, G.E., 2016. Timing and causes of North African wet phases during the last glacial period and implications for modern human migration. Scientific Reports 6, 36367.CrossRefGoogle ScholarPubMed
Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., Bauer, S., et al. , 2011. Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics 11, 77817816.CrossRefGoogle Scholar
Israelevich, P.L., Ganor, E., Levin, Z., Joseph, J.H., 2003. Annual variations of physical properties of desert dust over Israel. Journal of Geophysical Research 108(D13). http://dx.doi.org/10.1029/2002JD003163.CrossRefGoogle Scholar
Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., et al. , 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 6771.CrossRefGoogle ScholarPubMed
Jolly, D., Harrison, S.P., Damnati, B., Bonnefille, R., 1998. Simulated climate and biomes of Africa during the late Quaternary: comparison with pollen and lake status data. Quaternary Science Reviews 17, 629657.CrossRefGoogle Scholar
Kohfeld, K.E., Harrison, S.P., 2001. DIRTMAP: the geological record of dust. Earth-Science Reviews 54, 81114.CrossRefGoogle Scholar
Krom, M.D., Michard, A., Cliff, R.A., Strohle, K., 1999. Sources of sediment to the Ionian Sea and western Levantine basin of the Eastern Mediterranean during S-1 sapropel times. Marine Geology 160, 4561.CrossRefGoogle Scholar
Kröpelin, S., Verschuren, D., Lezine, A.-M., 2008. Response to comment on “Climate-driven ecosystem succession in the Sahara: the past 6000 years.” Science 322, 1326.CrossRefGoogle Scholar
Kuhnt, T., Schmiedl, G., Ehrmann, W., Hamann, Y., Andersen, N., 2008. Stable isotopic composition of Holocene benthic foraminifers from the Eastern Mediterranean Sea: past changes in productivity and deep water oxygenation. Palaeogeography, Palaeoclimatology, Palaeoecology 268, 106115.CrossRefGoogle Scholar
Kuhnt, T., Schmiedl, G., Ehrmann, W., Hamann, Y., Hemleben, C., 2007. Deep-sea ecosystem variability of the Aegean Sea during the past 22 kyr as revealed by benthic foraminifera. Marine Micropaleontology 64, 141162.CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, 261285.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20(1). http://dx.doi.org/10.1029/2004PA001071.Google Scholar
Lourens, L.J., Antonarakou, A., Hilgen, F.J., Van Hoof, A. A. M., Vergnaud-Grazzini, C., Zachariasse, W.J., 1996. Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 11, 391413.CrossRefGoogle Scholar
Löwemark, L., Lin, Y., Chen, H.-F., Yang, T.-N., Beier, C., Werner, F., Lee, C.-Y., Song, S.-R., Kao, S.-J., 2006. Sapropel burn-down and ichnological response to late Quaternary sapropel formation in two ~400 ky records from the Eastern Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 239, 406425.CrossRefGoogle Scholar
Lykousis, V, Chronis, G, Tselepides, A, Price, NB, Theocharis, A, Siokou-Frangou, I, et al. , 2002. Major outputs of the recent multidisciplinary biogeochemical researches undertaken in the Aegean Sea. Journal of Marine Systems 33–34, 313334.CrossRefGoogle Scholar
Maher, B.A., Prospero, J.M., Mackie, D., Gaiero, D., Hesse, P.P., Balkanski, Y., 2010. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews 99, 6197.CrossRefGoogle Scholar
Mahowald, N., Albani, S., Kok, J.F., Engelstaeder, S., Scanza, R., Ward, D.S., Flanner, M.G., 2014. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Research 15, 5371.CrossRefGoogle Scholar
Mahowald, N.M., Kloster, S., Engelstaedter, S., Moore, J.K., Mukhopadhyay, S., McConnell, J.R., Albani, S., et al. , 2010. Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmospheric Chemistry and Physics 10, 1087510893.CrossRefGoogle Scholar
Mahowald, N.M., Muhs, D.R., Levis, S., Rasch, P.J., Yoshioka, M., Zender, C.S., Luo, C., 2006. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. Journal of Geophysical Research: Atmospheres 111(D10). http://dx.doi.org/10.1029/2005JD006653.Google Scholar
Marx, S.K., Kamber, B.S., McGowan, H.A., Petherick, L.M., McTainsh, G.H., Stromsoe, N., Hooper, J.N., May, J.-H., 2018. Palaeo-dust records: a window to understanding past environments. Global and Planetary Change 165, 1343.CrossRefGoogle Scholar
Mattsson, J.O., Nihlén, T., 1996. The transport of Saharan dust to southern Europe: a scenario. Journal of Arid Environments 32, 111119.CrossRefGoogle Scholar
McManus, J.F., Bon, G.C., Broecker, W.S., Johnsen, S., Labeyrie, L., Higgins, S., 1994. High-resolution climate records from the North Atlantic during the last interglacial. Nature 371, 326329.CrossRefGoogle Scholar
Middleton, N.J., Goudie, A.S., 2001. Saharan dust: sources and trajectories. Transactions of the Institute of British Geographers 26, 165181.CrossRefGoogle Scholar
Milliman, J.D., Syvitski, J.P.M., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology 100, 525544.CrossRefGoogle Scholar
Moreno, A., Cacho, I., Canals, M., Prins, M.A., Sánchez-Goñi, M.-F., Grimalt, J.O., Weltje, G.J., 2002. Saharan dust transport and high-latitude glacial climatic variability: the Alboran Sea record. Quaternary Research 58, 318328.CrossRefGoogle Scholar
Moreno, T., Querol, X., Castillo, S., Alastuey, A., Cuevas, E., Herrmann, L., Mounkaila, M., Elvira, J., Gibbons, W., 2006. Geochemical variations in aeolian mineral particles from the Sahara-Sahel dust corridor. Chemosphere 65, 261270.CrossRefGoogle ScholarPubMed
Mulitza, S., Prange, M., Stuut, J.-B., Zabel, M., Dobeneck, T.v., Itambi, A.C., Nizou, J., Schulz, M., Wefer, G., 2008. Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning. Paleoceanography 23(4). http://dx.doi.org/10.1029/2008PA001637.CrossRefGoogle Scholar
Nehme, C., Verheyden, S., Noble, S.R., Farrant, A.R., Sahy, D., Hellstrom, J., Delannoy, J.J., Claeys, P., 2015. Reconstruction of MIS 5 climate in the central Levant using a stalagmite from Kanaan Cave, Lebanon. Climate of the Past 11, 17851799.CrossRefGoogle Scholar
Nihlén, T., Mattson, J.O., Rapp, A., Gagaoudaki, C., Kornaros, G., Papageorgiou, J., 1995. Monitoring of Saharan dust fallout on Crete and its contribution to soil formation. Tellus 47B, 365374.CrossRefGoogle Scholar
Nihlén, T., Olsson, S., 1995. Influence of eolian dust on soil formation in the Aegean area. Zeitschrift für Geomorphologie 39, 341361.Google Scholar
O'Hara, S.L., Clarke, M.L., Elatrash, M.S., 2006. Field measurements of desert dust deposition in Libya. Atmospheric Environment 40, 38813897.CrossRefGoogle Scholar
Ozer, P., Erpicum, M., Cortemiglia, G.C., Luccetti, G., 1998. A dustfall event in November 1996 in Genoa, Italy. Weather 53, 140145.CrossRefGoogle Scholar
Pausata, F.S.R., Messori, G., Zhang, Q., 2016. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period. Earth and Planetary Science Letters 434, 298307.CrossRefGoogle Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., et al. , 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.CrossRefGoogle Scholar
Pinardi, N, Masetti, E., 2000. Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: A review. Palaeogeography, Palaeoclimatology, Palaeoecology 158, 153173.CrossRefGoogle Scholar
Prospero, J.M., 1999. Long-term measurements of the transport of African mineral dust to the southeastern United States: implications for regional air quality. Journal of Geophysical Research 104(D13), 1591715927.CrossRefGoogle Scholar
Prospero, J.M., Ginoux, P., Torres, O., Nicholson, S., Gill, T., 2002. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics 40, 419.CrossRefGoogle Scholar
Pye, K., 1992. Aeolian dust transport and deposition over Crete and adjacent parts of the Mediterranean Sea. Earth Surface Processes and Landforms 17, 271288.CrossRefGoogle Scholar
Rea, D.K., 1994. The Paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind. Reviews of Geophysics 32, 159195.CrossRefGoogle Scholar
Revel, M., Ducassou, E., Grousset, F.E., Bernasconi, S.M., Migeon, S., Revillon, S., Mascle, J., Murat, A., Zaragosi, S., Bosch, D., 2010. 100,000 Years of African monsoon variability recorded in sediments of the Nile margin. Quaternary Science Reviews 29, 13421362.CrossRefGoogle Scholar
Rohling, E.J., 1994. Review and new aspects concerning the formation of eastern Mediterranean sapropels. Marine Geology 122, 128.CrossRefGoogle Scholar
Rohling, E.J., Marino, G., Grant, K.M., 2015. Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth-Science Reviews 143, 6297.CrossRefGoogle Scholar
Rossignol-Strick, M., 1983. African monsoons, an immediate climate response to orbital insolation. Nature 304, 4649.CrossRefGoogle Scholar
Rossignol-Strick, M., Nesteroff, W., Olive, P., Vergnaud-Grazzini, C., 1982. After the deluge: Mediterranean stagnation and sapropel formation. Nature 295, 105109.CrossRefGoogle Scholar
Ryder, C.L., Highwood, E.J., Lai, T.M., Sodemann, H., Marsham, J.H., 2013a. Impact of atmospheric transport on the evolution of microphysical and optical properties of Saharan dust. Geophysical Research Letters 40, 24332438.CrossRefGoogle Scholar
Ryder, C.L., Highwood, E.J., Rosenberg, P.D., Trembath, J., Brooke, J.K., Bart, M., Dean, A., et al. , 2013b. Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign. Atmospheric Chemistry and Physics 13, 303325.CrossRefGoogle Scholar
Sala, J.Q., Jorge Olcina Cantos, J. O., Chiva, E.M., 1996. Red dust rain within the Spanish Mediterranean area. Climatic Change 32, 215228.CrossRefGoogle Scholar
Schepanski, K., Tegen, I., Macke, A., 2012. Comparison of satellite based observations of Saharan dust source areas. Remote Sensing of Environment 123, 9097.CrossRefGoogle Scholar
Scheuvens, D., Schütz, L., Kandler, K., Ebert, M., Weinbruch, S., 2013. Bulk composition of northern African dust and its source sediments—a compilation. Earth-Science Reviews 116, 170194.CrossRefGoogle Scholar
Schmiedl, G., Kuhnt, T., Ehrmann, W., Emeis, K.-C., Hamann, Y., Kotthoff, U., Dulski, P., Pross, J., 2010. Climatic forcing of eastern Mediterranean deep-water formation and benthic ecosystems during the past 22 000 years. Quaternary Science Reviews 29, 30063020.CrossRefGoogle Scholar
Schulz, M., Mudelsee, M., 2002. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & Geosciences 28, 421426.CrossRefGoogle Scholar
Schütz, L., Jaenicke, R., Pietrek, H., 1981. Saharan dust transport over the North Atlantic Ocean. Geological Society of America Bulletin 186, 87100.CrossRefGoogle Scholar
Seidel, M., Hlawitschka, M., 2015. An R-Based function for modeling of end member compositions. Mathematical Geosciences 47, 9951007.CrossRefGoogle Scholar
Skonieczny, C., McGee, D., Winckler, G., Bory, A., Bradtmiller, L.I., Kinsley, C.W., Polissar, P.J., Pol-Holz, R. de, Rossignol, L., Malaizé, B., 2019. Monsoon-driven Saharan dust variability over the past 240,000 years. Science Advances 5(1). http://dx.doi.org/10.1126/sciadv.aav1887.CrossRefGoogle ScholarPubMed
Stuut, J.-B., Smalley, I., O'Hara-Dhand, K., 2009. Aeolian dust in Europe: African sources and European deposits. Quaternary International 198, 234245.CrossRefGoogle Scholar
Stuut, J.-B., Zabel, M., Ratmeyer, V., Helmke, P., Schefuß, E., 2005. Provenance of present-day eolian dust collected off NW Africa. Journal of Geophysical Research 110(D4), 15,867.CrossRefGoogle Scholar
Swap, R., Garstand, M., Greco, S., 1992. Saharan dust in the Amazon Basin. Tellus B 44, 133149.CrossRefGoogle Scholar
Tegen, I., 2003. Modeling the mineral dust aerosol cycle in the climate system. Quaternary Science Reviews 22, 18211834.CrossRefGoogle Scholar
Tegen, I., Harrison, S.P., Kohfeld, K., Prentice, I.C., Coe, M., Heimann, M., 2002. Impact of vegetation and preferential source areas on global dust aerosol: results from a model study. Journal of Geophysical Research 107(D21), AAC 14-1AAC 14-27.CrossRefGoogle Scholar
Tegen, I., Lacis, A.A., Fung, I., 1996. The influence on climate forcing mineral aerosols from distributed soils. Nature 380, 419422.CrossRefGoogle Scholar
Tegen, I., Schulz, M., 2014. Numerical dust models. In: Knippertz, T., Stuut, J.-B. (Eds.), Mineral Dust. Springer, Dordrecht, 201222.Google Scholar
Torrence, C., Campo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79, 6178.2.0.CO;2>CrossRefGoogle Scholar
van der Does, M., Korte, L.F., Munday, C.I., Brummer, G.-J.A., Stuut, J.-B., 2016. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic. Atmospheric Chemistry and Physics 16, 1369713710.CrossRefGoogle Scholar
Venkatarathnam, K., Ryan, W.B.F., 1971. Dispersal patterns of clay minerals in the sediments of the Eastern Mediterranean Sea. Marine Geology 11, 261282.CrossRefGoogle Scholar
Walling, D.E., Moorehead, R.W., 1989. The particle size characteristics of fluvial suspended sediment: an overview. Hydrobiologia 176/177, 125149.CrossRefGoogle Scholar
Washington, R., Todd, M., Middleton, N.J., Goudie, A.S., 2003. Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Annals of the Association of American Geographers 93, 297313.CrossRefGoogle Scholar
Wehausen, R., Brumsack, H.-J., 2000. Chemical cycles in Pliocene sapropel-bearing and sapropel-barren eastern Mediterranean sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 158, 325352.CrossRefGoogle Scholar
Weldeab, S., Emeis, K.-C., Hemleben, C., Siebel, W., 2002a. Provenance of lithogenic surface sediments and pathways of riverine suspended matter in the Eastern Mediterranean Sea: evidence from 143Nd/144Nd and 87Sr/86Sr ratios. Chemical Geology 186, 139149.CrossRefGoogle Scholar
Weldeab, S., Emeis, K.-C., Hemleben, C., Vennemann, T.W., Schulz, H., 2002b. Sr and Nd isotope composition of Late Pleistocene sapropels and nonsapropelic sediments from the Eastern Mediterranean Sea: implications for detrital influx and climatic conditions in the source areas. Geochimica et Cosmochimica Acta 60, 35853598.CrossRefGoogle Scholar
Weltje, G.J., 1997. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Mathematical Geology 29, 503549.CrossRefGoogle Scholar
Yarincik, K.M., Murray, R.W., 2000. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: results from Al/Ti and K/Al. Paleoceanography 15, 210228.CrossRefGoogle Scholar
Zviely, D., Kit, E., Klein, M., 2007. Longshore sand transport estimates along the Mediterranean coast of Israel in the Holocene. Marine Geology 238, 6173.CrossRefGoogle Scholar
Supplementary material: PDF

Beuscher et al. supplementary material

Supplementary Figure 1

Download Beuscher et al. supplementary material(PDF)
PDF 441.7 KB
Supplementary material: PDF

Beuscher et al. supplementary material

Beuscher et al. supplementary material 2

Download Beuscher et al. supplementary material(PDF)
PDF 1.1 MB
Supplementary material: PDF

Beuscher et al. supplementary material

Beuscher et al. supplementary material 3

Download Beuscher et al. supplementary material(PDF)
PDF 782.5 KB
Supplementary material: PDF

Beuscher et al. supplementary material

Beuscher et al. supplementary material 4

Download Beuscher et al. supplementary material(PDF)
PDF 494.2 KB
Supplementary material: File

Beuscher et al. supplementary material

Beuscher et al. supplementary material 5

Download Beuscher et al. supplementary material(File)
File 16.9 KB