Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T20:32:29.195Z Has data issue: false hasContentIssue false

Reconstructing habitats in central Amazonia using megafauna, sedimentology, radiocarbon, and isotope analyses

Published online by Cambridge University Press:  20 January 2017

Dilce de Fátima Rossetti*
Affiliation:
Museu Paraense Emı́lio Goeldi, Av. Perimetral, 1901, CP 399, CEP 66710-530 Belém, PA, Brazil
Peter Mann de Toledo
Affiliation:
Museu Paraense Emı́lio Goeldi, Av. Perimetral, 1901, CP 399, CEP 66710-530 Belém, PA, Brazil
Heloı́sa Maria Moraes-Santos
Affiliation:
Museu Paraense Emı́lio Goeldi, Av. Perimetral, 1901, CP 399, CEP 66710-530 Belém, PA, Brazil
Antônio Emı́dio de Araújo Santos Jr.
Affiliation:
Universidade Federal do Pará, Centro de Geociências, Campus do Guamá S/N, Belém, PA, Brazil
*
*Corresponding author. Fax: (091) 249-0466.E-mail address: rossetti@museu-goeldi.br(D. de Fa"tima Rossetti).

Abstract

A paleomegafauna site from central Amazonia with exceptional preservation of mastodons and ground sloths allows for the first time a precise age control based on 14C analysis, which, together with sedimentological and δ13C isotope data, provided the basis to discuss habitat evolution within the context of climate change during the past 15,000 yr. The fossil-bearing deposits, trapped within a depression in the Paleozoic basement, record three episodes of sedimentation formed on floodplains, with an intermediate unit recording a catastrophic deposition through debris flows, probably favored during fast floodings. The integrated approach presented herein supports a change in humidity in central Amazonia through the past 15,000 yr, with a shift from drier to arboreal savanna at 11,340 (±50) 14C yr B.P. and then to a dense forest like we see today at 4620 (±60) 14C yr B.P.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absy, M.L, Cleef, A, Fournier, M, Martin, L, Servant, M, Sifeddine, A, Ferreira da Silva, M.F, Soubiès, F, Suguio, K, Turcq, B, van der Hammen, T, (1991). Mise en évidence de quatre phases d'ouverture de la forêt dense dans lê sud-est de l'Amazonie au cours dês 60.000 denières années. Première comparaison avec d'autres regions tropicales. Comptes Rendus de l'Ácadémie des Sciences Paris. 312, 673678.Google Scholar
Bemerguy, R.L., (1997). ). Morfotectônica e evolução paleogeográfica da região da calha do rio Amazonas. Ph.D. thesis, Universidade Federal do Pará, Belém.Google Scholar
Bird, M.I, Fyfe, W.S, Pinheiro-Dick, D, Chivas, A.R, (1992). Carbon isotope indicators of catchment vegetation in the Brazilian Amazon. Global Biogeochemical Cycles. 6, 293306.Google Scholar
Campbell, K.E, Frayley, C.D, (1984). Holocene flooding and species diversity in southwestern Amazonia. Quaternary Research. 21, 369375.CrossRefGoogle Scholar
Campbell, K.E, Frailey, C.D, Arellano-L, J, (1985). The geology of the Rio Beni: further evidence for Holocene flooding in Amazonia. Contributions in Science–Natural History Museum of Los Angeles. 364, 118.Google Scholar
Cartelle, C, (1999). Pleistocene mammals of the Cerrado and Caatinga of Brazil. Eisenberg, J, Redford, K.H, Mammals of the Neotropics. The Central Neotropics: Ecuador, Peru, Bolivia, Brazil. 3rd ed.Univ. of Chicago Press, Chicago., 2746.Google Scholar
Cartelle, C, Bohórquez, G.A, (1982). Eremotherium laurillardi (Lund, 1842). 1. Determinação especı́fica e dimorfismo sexual. Iheringia. 7, 4563.Google Scholar
Cartelle, C, de Iullis, G, (1995). Eremotherium laurillardi: the Panamerican late Pleistocene megatheriid sloth. Journal of Vertebrate Paleontology. 15, 830841.Google Scholar
Chanley, H, (1989). Clay Sedimentology. Springer-Verlag, Berlin.Google Scholar
Colinvaux, P.A, Oliveira, P.E, (2001). Amazon plant diversity and climate through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology. 166, 5163.Google Scholar
Colinvaux, P.A, Oliveira, P.E, Bush, M.B, (2000). Amazon and Neotropical plant communities on glacial time scales: the failure of the aridity and refuge hypotheses. Quaternary Science Reviews. 19, 141169.Google Scholar
Costa, J.B.S, Hasui, Y, (1997). Evolução Geológica da Amazônia. Costa, M.L, Angélica, R.S, Contribuições à Geologia da Amazônia. Falângola, Belém., 1676.Google Scholar
Croft, D.A, (2001). Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Diversity and Distributions. 7, 271287.Google Scholar
Haffer, J, (1969). Speciation in Amazonian forest birds. Science. 165, 131137.Google Scholar
Haffer, J, (2001). Hypotheses to explain the origin of species in Amazonia. Vieira, I.C.G, Silva, J.M.C, Oren, D.C, D'Incao, M.A, Diversidade Biológica e Cultural da Amazônia. Editora do Museu Paraense Emı́lio Goeldi, Belém., 45118.Google Scholar
Heberle, S.G, Maslin, M.A, (1999). Late Quaternary vegetation and climate change in the Amazon Basin based on a 50,000 year pollen record from the Amazon Fan, ODP Site 932. Quaternary Research. 51, 2738.Google Scholar
Hoffstetter, R, (1982). Les édentés xénarthres, un groupe singulier de la faune néotropicale: origine, affinités, radiation adaptative, migrations et extinctions. Gallitelli, M, Proceedings of the First International Meeting on Paleontology, Essential of Historical Geology. Società Tipografica Editrice Modenese Mucchi, Modena, Italy., 385443.Google Scholar
Kastner, T, Goñi, M.A, (2003). Constancy in the vegetation of the Amazon Basin during the late Pleistocene: evidence from the organic matter composition of Amazon deep sea fan sediments. Geology. 31, 291294.Google Scholar
Latrubesse, E.M, (2000). The late Pleistocene in Amazonia: a paleoclimatic approach. Smolka, P, Volkheimer, W, Southern Hemisphere and Neoclimates. Springer-Verlag, Germany., 209224.Google Scholar
Latrubesse, E.M, Franzinelli, E, (1998). Late Quaternary alluvial sedimentation in the upper Rio Negro Basin, Amazônia, Brazil: paleohydrological implications. Benito, G, Baker, V.R, Gregory, K.J, Paleohydrology and Environmental Change. Wiley, Germany., 261271.Google Scholar
Latrubesse, E.M, Rancy, A, (1998). The late Quaternary of the upper Juruá River, southwestern Amazonia, Brazil: geology and vertebrate paleontology. Quaternary of South America and Antarctic Peninsula. 11, 2746.Google Scholar
Leeder, M, (2001). Sedimentology and Sedimentary Basins—from Turbulence to Tectonics. 2nd ed.Blackwell Sci, Oxford.Google Scholar
Magnusson, W.E, Sanaiotti, T.M, Lima, A.P, Martinelli, L.A, Victoria, R.L, Araújo, M.C, Albernaz, A.L, (2002). A comparison of δ13C ratios of surface soils in savannas and forests in Amazonia. Journal of Biogeography. 29, 857866.Google Scholar
Medina, E, Montes, G, Cuecas, E, Rokzandic, Z, (1986). Profiles of CO2 concentration and δ13C values in tropical rain forests of the upper Rio Negro basin, Venezuela. Journal of Tropical Ecology. 2, 207217.Google Scholar
Merwe, N.J, (1982). Carbon isotopes, phytosynthesis, and archaeology. American Scientist. 70, 596606.Google Scholar
Merwe, N.J, Medina, E, (1991). The canopy effect, carbon isotope rations and foodwebs in Amazonia. Journal of Archaeological Science. 18, 249259.Google Scholar
Mörner, N.A, Rossetti, D.F, Toledo, P.M, (2001). The Amazonian rainforest: only some 6–5 million years old. Vieira, I.C.G, Silva, J.M.C, Oren, D.C, D'Incao, M.A, Diversidade Biológica e Cultural da Amazônia. Editora do Museu Paraense Emı́lio Goeldi, Belém., 318.Google Scholar
Nowak, R.M, (1999). Walker's Mammals of the World. 6th ed. Johns Hopkins Press, Baltimore.CrossRefGoogle Scholar
Owen-Smith, R.N, (1988). Megaherbivores. The Influence of Very Large Body Size in Ecology. Cambridge Univ. Press, Cambridge, UK.Google Scholar
Prance, G.T, (1982). Forest refuges: evidence from woody angiosperms. Prance, G.T, Biological Diversification in the Tropics. Columbia Univ. Press, New York., 137158.Google Scholar
Rancy, A., (1991). ). Pleistocene mammals and palaeoecology of the western Amazon. Ph.D. thesis, Univ. of Florida, Gainesville.Google Scholar
Rancy, A, (2000). Paleoecologia da Amazônia. Megafauna do Pleistoceno. Universidade Federal de Santa Catarina Press, Santa Catarina, Brazil.Google Scholar
Rasänen, M, Salo, J.S, Jungnert, H, Pitman, R, (1990). Evolution of western Amazon lowland relief: impact of Andean foreland dynamics. Terra Nova. 2, 320332.Google Scholar
Sifeddine, A, Marint, L, Turcq, B, Volkmer-Ribeiro, C, Soubiès, F, Cordeiro, R.C, Suguio, K, (2001). Variations of the Amazonian rainforest environment: a sedimentological record covering 30,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology. 168, 221235.Google Scholar
Tieszen, L.L, (1991). Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. Journal of Archaeological Science. 18, 227248.Google Scholar
Toledo, P.M., (1986). ). Descrição do sincrânio de Eremotherium laurillardi (Lund, 1842): taxonomia e paleobiogeografia. M.S. thesis. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.Google Scholar
Toledo, P.M, (1998). Locomotory Patterns within the Pleistocene Sloths. Museu Paraense Emı́lio Goeldi Press, Belém.Google Scholar
Tucker, M.E, (1981). Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks. Blackwell Sci, Oxford.Google Scholar
van der Hammen, T, (2001). Paleoecology of Amazonia. Vieira, I.C.G, Silva, J.M.C, Oren, D.C, D'Incao, M.A, Diversidade Biológica e Cultural da Amazônia. Editora do Museu Paraense Emı́lio Goeldi, Belém., 1944.Google Scholar
van der Hammen, T, Duivenvoorden, J.F, Lips, J.M, Urrego, L.E, Espejo, N, (1992). The late Quaternary of the middle Caquetá area (Colombian Amazonia). Journal of Quaternary Sciences. 7, 45.Google Scholar
Webb, S.D, (1991). Ecogeography and the Great American Interchange. Paleobiology. 17, 266280.Google Scholar
Webb, S.D, (1999). Isolation and interchange: a deep history of South American mammals. Eisenberg, J, Redford, K.H, Mammals of the Neotropics. The Central Neotropics: Ecuador, Peru, Bolivia, Brazil. 3rd ed. Univ. of Chicago Press, Chicago., 1319.Google Scholar
Webb, S.D, Rancy, A, (1996). Late Cenozoic evolution of neotropical mammal fauna. Jackson, J.B.C, Budd, A.B, Coates, A.G, Evolution and Environment in Tropical America. Univ. of Chicago Press, Chicago., 335358.Google Scholar