Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T11:04:47.382Z Has data issue: false hasContentIssue false

Quantitative reconstruction of Holocene precipitation changes in southern Patagonia

Published online by Cambridge University Press:  20 January 2017

Marcela Sandra Tonello*
Affiliation:
Laboratorio de Paleoecología y Palinología, Departamento de Biología, Universidad Nacional de Mar del Plata, Funes 3250 - (7600) Mar del Plata, Argentina
Maria Virginia Mancini
Affiliation:
Laboratorio de Paleoecología y Palinología, Departamento de Biología, Universidad Nacional de Mar del Plata, Funes 3250 - (7600) Mar del Plata, Argentina
Heikki Seppä
Affiliation:
Department of Geology, P.O. Box 64, FI-00014, University of Helsinki, Finland
*
Corresponding author. Fax: +54 223 4753150. E-mail address:mtonello@mdp.edu.ar (M.S. Tonello).

Abstract

Holocene variations in annual precipitation (Pann) were reconstructed from pollen data from southern Argentinian Patagonia using a transfer function developed based on a weighted-averaging partial least squares (WA-PLS) regression. The pollen–climate calibration model consisted of 112 surface soil samples and 59 pollen types from the main vegetation units, and modern precipitation values obtained from a global climate database. The performance (r2 = 0.517; RMSEP = 126 mm) of the model was comparable or slightly lower than in other comparable pollen–climate models. Fossil pollen data were obtained from a sediment core from Cerro Frias site (50°24'S, 72°42'W) located at the forest-steppe ecotone. Reconstructed Pann values of about 200 mm suggest dry conditions during the Pleistocene–Holocene transition (12,500–10,500 cal yr BP). Pann values were about 300–350 mm from 10,500 to 8000 cal yr BP and increased to 400–500 mm between 8000 and 1000 cal yr BP. An abrupt decrease in Pann at about 1000 cal yr BP was associated with a Nothofagus decline. The reconstructed Pann suggests a weakening and southward shift of the westerlies during the early Holocene and intensification, with no major latitudinal shifts, during the mid-Holocene at high latitudes in southern Patagonia.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackert, R.P., Becker, R.A., Singer, B.S., Kurz, M.D., Caffee, M.W., and Mickelson, D.M. Patagonian glacier response during the late Glacial–Holocene transition. Science 321, (2008). 392395.CrossRefGoogle ScholarPubMed
Adam, D.P., Mehringer, P.J. Jr Modern pollen surface samples: an analysis of subsamples. Journal of Research of the U.S. Geological Survey 3, 6 (1975). 733736.Google Scholar
Aniya, M. Holocene glacial chronology in Patagonia: Tyndall and Uppsala Glaciers. Arctic and Alpine Research 27, 4 (1995). 311322.Google Scholar
Barbería, E.M., (1995). Los dueños de la tierra en la Patagonia Austral 1880–1920. Universidad Federal de la Patagonia Austral, Rio Gallegos., 469 pp.Google Scholar
Birks, H.J.B., (1995). Quantitative palaeoenvironmental reconstructions. In: Maddy, D., Brew, J.S. (Eds.), Statistical modeling quaternary science data, Technical Guide 5. Quaternary Research Association, Cambridge., pp. 161254.Google Scholar
Birks, H.J.B. Numerical tools in palaeolimnology — progress, potentialities, and problems. Journal of Paleolimnology 20, (1998). 307332.CrossRefGoogle Scholar
Birks, H.J.B. Quantitative palaeoenvironmental reconstructions from Holocene biological data. Mackay, A., Battarbee, R.W., Birks, H.J.B., and Oldfield, F. Global Change in the Holocene. (2003). Arnold, London. 107123.Google Scholar
Birks, H.J.B., and Seppä, H. Pollen-based reconstructions of late-Quaternary climate in Europe — progress, problems, and pitfalls. Acta Palaeobotanica 44, 2 (2004). 317334.Google Scholar
Cleveland, W.S. Robust locally-weighted regression and smoothing scatter plots. Journal of the American Statistical Association 74, (1979). 829836.Google Scholar
Donoso Zegers, C. Las especies arbóreas de los bosques templados de Chile y Argentina. Autoecología. Cuneo, M. Chile. (2006). Google Scholar
Faegri, K., Iversen, J. Faegri, K., Kalana, P.E., and Krzywinski, K. Textbook of Pollen Analysis. (1989). John Wiley and Sons, Chichester.Google Scholar
Fisinger, W., Heiri, O., Valsecchi, V., Tinner, W., and Lotter, A. Modern pollen assemblages as climate indicators in southern Europe. Global Ecology and Biogeography 16, 5 (2007). 567582.Google Scholar
Franco, N.V., Borrero, L.A., and Mancini, M.V. Environmental changes and hunter gatherers in southern Patagonia: Lago Argentino and Cabo Vírgenes (Argentina). Before Farming 3, (2004). 117.Google Scholar
Garreaud, R.D., Vuille, M., Compagnucci, R., and Marengo, J. Present-day South American Climate.. PALAEO3 Special Issue (LOTRED South America) 281, 3-4 (2009). 180195.Google Scholar
Gilli, A., Anselmetti, F.S., Ariztegui, D., Beres, M., McKenzie, J.A., and Markgraf, V. Seismic stratigraphy, buried beach ridges and contourite drifts: the Late Quaternary history of the closed Lago Cardiel basin, Argentina (49°S). Sedimentology 52, (2005). 123.CrossRefGoogle Scholar
Glasser, N.F., Harrison, S., Winchester, V., and Aniya, M. Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Global and Planetary Change 43, (2004). 79101.Google Scholar
Grimm, E. Tilia Software. (2004). Illinois State Museum, Research and Collection Center, Google Scholar
Grimm, E.C., Lozano-García, S., Behling, H., and Markgraf, V. Holocene vegetation and climate variability in the Americas. Markgraf, V. Interhemispheric Climate Linkages. (2001). Academic Press, San Diego. 325363.Google Scholar
Haberzettl, T., Corbella, C., Fey, M., Janssen, S., Lücke, A., Mayr, C., Ohlendorf, C., Schäbitz, F., Schleser, G.H., Wille, M., Wulf, S., and Zolitschka, B. Lateglacial and Holocene wet–dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine sediment record from Laguna Potrok Aike, Argentina. The Holocene 17, (2007). 297310.Google Scholar
Heusser, C.J., and Streeter, S.S. A temperature and precipitation record of the past 16000 years in Southern Chile. Science 210, (1980). 13451347.Google Scholar
Heusser, C.J., Streeter, S.S., and Stuiver, M. Temperature and precipitation record in southern Chile extended to ∼ 43000 yr. ago. Nature 294, (1981). 6567.Google Scholar
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Hu, F.S., Brown, T.A., (2009). Vegetation mediated the impacts of postglacial climatic change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs 9, 201219.Google Scholar
Hoffman, J.A.J. Atlas climatológico de América del Sur. OMM-WMO. (1975). Unesco, Google Scholar
Huber, U.M., and Markgraf, V. Holocene fire frequency and climate change at Rio Rubens Bog, southern Patagonia. Veblen, T.T., Baker, W.L., Montenegro, G., and Swetnam, T.W. Fire and Climatic Change in Temperate Ecosystems of the Western Americas. (2003). Springer Verlag, New York. 357380.Google Scholar
Huisman, J., Olff, H., and Fresco, L.F.M. A hierarchical set of models for species response analysis. Journal of Vegetation Science 4, (1993). 3746.CrossRefGoogle Scholar
Juggins, S. C2 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation. (2003). University of Newcastle, Google Scholar
Leemans, R., Cramer, W.P., (1991). The IIASA database from mean monthly values of temperature, precipitation, and cloudiness on a global terrestrial grid. International Institute for Applied Systems Analysis (IIASA), . RR-91-18. http://www.pik-potsdam.de/∼cramer/climate.Google Scholar
Li, Y., Xu, Q., Liu, J., Yang, X., and Nakagawa, T. A transfer-function model developed from an extensive surface-pollen data set in northern China and its potential for palaeoclimate reconstructions. The Holocene 17, 7 (2007). 897905.Google Scholar
McCormac, F.G, Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., and Reimer, P.J. SHCal04 Southern Hemisphere calibration 0–1000 cal BP. Radiocarbon 46, (2004). 10871092.CrossRefGoogle Scholar
McCulloch, R.D., and Davies, S.J. Late-glacial and Holocene palaeoenvironmental change in the central Strait of Magellan, southern Patagonia. Palaeogeography Palaeoclimatology, Palaeoecology 173, (2001). 143173.Google Scholar
Mancini, M.V. Vegetational changes during the Holocene in Extra-Andean Patagonia, Santa Cruz Province, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 183, (1998). 207219.Google Scholar
Mancini, M.V. Vegetation and climate during the Holocene in Southwest Patagonia. Argentina. Review of Palaeobotany and Palynology 122, (2002). 101115.Google Scholar
Mancini, M.V. Holocene vegetation and climate changes from a peat pollen record of the forest-steppe ecotone, Southwest of Patagonia (Argentina). Quaternary Science Reviews 28, 15–16 (2009). 14901497.Google Scholar
Mancini, M.V., Paez, M.M., and Prieto, A.R. Cambios paleoambientales durante los últimos 7.000 14C años A.P. en el ecotono bosque-estepa, 47°–48°S, Santa Cruz, Argentina. Ameghiniana 39, 2 (2002). 151162.Google Scholar
Mancini, M.V., Paez, M.M., Prieto, A.R., Stutz, S., Tonello, M., and Vilanova, I. Mid-Holocene climatic variability reconstruction from pollen records (32°–52°S, Argentina). Quaternary International 132, (2005). 4759.CrossRefGoogle Scholar
Markgraf, V., Webb, R.S., Anderson, K.H., and Anderson, L. Modern pollen/climate calibration for southern South America. Palaeogeography, Palaeoclimatology, Palaeoecology 181, (2002). 357397.CrossRefGoogle Scholar
Markgraf, V, Bradbury, J.P., Schwalb, A., Burns, S.J., Stern, C., Ariztegui, D., Gilli, A., Anselmetti, F.S., Stine, S., and Maidana, N. Holocene palaeoclimates of southern Patagonia: limnological and environmental history of Lago Cardiel, Argentina. The Holocene 13, 3 (2003). 597607.Google Scholar
Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M., Ciais, P., Hammer, C., Johnsen, S., Lipenkov, V.Y., Mosley-Thompson, E., Petit, J.R., Steig, E.J., Stievenard, M., and Vaikmae, R. Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quaternary Research 54, (2000). 348358.CrossRefGoogle Scholar
Mercer, J.H. Holocene glacier variations in southern Patagonia. Striae 18, (1982). 3540.Google Scholar
Moreno, P.I., François, J.P., Villa-Martínez, R.P., and Moy, C.M. Millenial-scale variability in Southern Hemisphere westerly wind activity over the last 5000 years in SW Patagonia. Quaternary Science Reviews 28, (2009). 2538.Google Scholar
Moy, C.M, Dunbar, R.B., Moreno, P.I., Francois, J-P, Villa-Martinez, R., Mucciarone, D.M., Guilderson, T.P., and Garreaud, R.D. Isotopic evidence for hydrologic change related to the westerlies in SW Patagonia, Chile, during the last millennium. Quaternary Science Reviews 27, (2008). 13351349.Google Scholar
Oksanen, J., and Minchin, P.R. Continuum theory revisited: what shape are species responses along ecological gradients?. Ecological Modelling 157, (2002). 119129.Google Scholar
Paruelo, J.M., Beltrán, A., Jobbágy, E., Sala, O., and Golluscio, R. The climate of Patagonia: general patterns and controls on biotic process. Ecologia Austral 8, (1998). 85101.Google Scholar
Prohaska, F. The climate of Argentina, Paraguay and Uruguay. Schwerdtfeger, W. Climates of Central and South America. (1976). Elsevier, 13112.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Blackwell, P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 terrestial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Schäbitz, F. Estudios polínicos del Cuaternario en las regiones áridas del sur de Argentina. Revista del Museo de Ciencias Naturales Bernardino Rivadavia Nueva Serie 5, 2 (2003). 291300.Google Scholar
Schäbitz, F., and Liebricht, E. Landscape and climate development in the south-eastern part of the “Arid Diagonal” during the last 13,000 years. Bamberger Geographische Schriften 15S, (1998). 371388.Google Scholar
Seppä, H., and Birks, H.J.B. July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen based climate reconstructions. The Holocene 11, (2001). 527537.Google Scholar
Seppä, H., and Bennett, K.D. Quaternary pollen analysis: recent progress in palaeoecology and palaeoclimatology. Progress in Physical Geography 27, (2003). 548579.CrossRefGoogle Scholar
Seppä, H., Birks, H.J.B., Odland, A., Poska, A., and Veski, S. A modern pollen–climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. Journal of Biogeography 31, (2004). 251267.Google Scholar
Stern, C.R. Holocene tephrocronology record of large explosive eruptions in the southernmost Patagonian Andes. Bulletin of Volcanology 70, (2008). 435454.Google Scholar
Stine, S. Extreme and persistent drought in California and Patagonia during Mediaeval time. Nature 369, (1994). 546549.Google Scholar
Stine, S., and Stine, M. A record from Lake Cardiel of climate in southern South America. Nature 345, (1990). 705708.Google Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., (2005). Calib 5.0.1.. http://calib.qub.ac.uk/calib/.Google Scholar
Veblen, T.T., Donoso, C., Kitzberger, T., and Rebertus, A.J. Ecology of southern Chilean and Argentinean Nothofagus forest. Veblen, T.T., Hill, R.S., and Read, J. Ecology and Biogeography of Nothofagus Forest. (1996). Yale University Press, 293353.Google Scholar
Villa-Martínez, R., and Moreno, P.I. Pollen evidence for variations in the southern margin of the westerly winds in SW Patagonia over the last 12,600 years. Quaternary Research 68, (2007). 400409.CrossRefGoogle Scholar
Villalba, R. Tree-ring and glacial evidence for the Medieval Warm Epoch and the Little Ice Age in southern South America. Climate Change 26, (1994). 183197.Google Scholar
Villalba, R., Masiokas, M.H., Kitzberger, T., and Boninsegna, J.A. Biogeographical consequences of recent climate changes in the southern Andes of Argentina. Huber, U., and Reasoner, M. Global Changes and Mountain Regions. (2005). Springer, Switzerland. 157168.Google Scholar
Wagner, S., Widmann, M., Jones, J., Haberzettl, T., Lücke, A., Mayr, C., Ohlendorf, C., Schäbitz, F., and Zolitschka, B. Transient simulations, empirical reconstructions and forcing mechanisms for the Mid-Holocene hydrological climate in southern Patagonia. Climate Dynamics 29, (2007). 333355.Google Scholar
Wille, M., Maidana, N.I., Schäbitz, F., Fey, M., Haberzettl, T., Janssen, S., Lücke, A., Mayr, C., Ohlendorf, C., Schleser, G.H., and Zolitschka, B. Vegetation and climate dynamics in southern South America: the microfossil record of Laguna Potrok Aike, Santa Cruz, Argentina. Review of Palaeobotany and Palynology 146, (2007). 234246.Google Scholar
Whitlock, C., Bianchi, M.M., Bartlein, P.J., Markgraf, V., Marlon, J., Walsh, M., and McCoy, N. Postglacial vegetation, climate and fire history along the east side of the Andes (lat. 41–42.5°S), Argentina. Quaternary Research 66, (2006). 187201.Google Scholar
Whitlock, C., Moreno, P.I., and Bartlein, P. Climatic controls of Holocene fire patterns in southern South America. Quaternary Research 68, (2007). 2836.Google Scholar