Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T15:40:05.975Z Has data issue: false hasContentIssue false

Palynological evidence for climatic and oceanic variability off NW Africa during the late Holocene

Published online by Cambridge University Press:  20 January 2017

Ilham Bouimetarhan*
Affiliation:
Department of Geosciences, University of Bremen, Klagenfurter Strasse, D-28359 Bremen, Germany MARUM - Center of Marine Environmental Sciences, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany
Lydie Dupont
Affiliation:
MARUM - Center of Marine Environmental Sciences, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany
Enno Schefuß
Affiliation:
MARUM - Center of Marine Environmental Sciences, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany
Gesine Mollenhauer
Affiliation:
Department of Geosciences, University of Bremen, Klagenfurter Strasse, D-28359 Bremen, Germany Alfred-Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
Stefan Mulitza
Affiliation:
MARUM - Center of Marine Environmental Sciences, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany
Karin Zonneveld
Affiliation:
Department of Geosciences, University of Bremen, Klagenfurter Strasse, D-28359 Bremen, Germany MARUM - Center of Marine Environmental Sciences, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany
*
Corresponding author. Department of Geosciences, University of Bremen, Klagenfurterstrasse, D-28359 Bremen, Germany. Tel.: +49 421 218 65138; fax: +49 421 218 4451.

E-mail address:bouimetarhan@uni-bremen.de (I. Bouimetarhan).

Abstract

Pollen and organic-walled dinoflagellate cyst assemblages from core GeoB 9503-5 retrieved from the mud-belt (∼ 50 m water depth) off the Senegal River mouth have been analyzed to reconstruct short-term palaeoceanographic and palaeoenvironmental changes in subtropical NW Africa during the time interval from ca. 4200 to 1200 cal yr BP. Our study emphasizes significant coeval changes in continental and oceanic environments in and off Senegal and shows that initial dry conditions were followed by a strong and rapid increase in humidity between ca. 2900 and 2500 cal yr BP. After ca. 2500 cal yr BP, the environment slowly became drier again as indicated by slight increases in Sahelian savannah and desert elements in the pollen record. Around ca. 2200 cal yr BP, this relatively dry period ended with periodic pulses of high terrigenous contributions and strong fluctuations in fern spore and river plume dinoflagellate cyst percentages as well as in the fluxes of pollen, dinoflagellate cysts, fresh-water algae and plant cuticles, suggesting “episodic flash flood” events of the Senegal River. The driest phase developed after about 2100 cal yr BP.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandre, A., Meunier, J.-D., Lézine, A.M., Vincens, A., and Schwartz, D. Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 136, (1997). 213229.Google Scholar
Ballouche, A., and Neumann, K. La végétation du Sahel Burkinabé à l'Holocéne: la mare d'Ousri. 2nd Symposium on African Palynology, Tervuren (Belgium), 1995. Publications Occasionnelles CIFEG, 1995/31. (1995). Orléans, CIFEG. 1925.Google Scholar
Bard, E. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 6, (1988). 635645.CrossRefGoogle Scholar
Bard, E., Rostek, F., Turon, J.L., and Gendreau, S. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, (2000). 13211324.CrossRefGoogle ScholarPubMed
Blasco, F. Climatic factors and the biology of mangrove plants. Sneadaker, S.C., and Sneadaker, J.G. The Mangrove Ecosystem: Research Methods. (1984). UNESCO, Paris. 1835.Google Scholar
Bouimetarhan, I., Marret, F., Dupont, L., and Zonneveld, K.A.F. Dinoflagellate cyst distribution in marine surface sediments off West Africa (17-6°N) in relation to sea-surface conditions, freshwater input and seasonal coastal upwelling. Marine Micropaleontology 71, (2009). 113130.Google Scholar
Bonnefille, R., and Riollet, G. Pollens des Savanes d'Afrique Orientale. (1980). Edition de CNRS, Paris. 140 pp., 113pl Google Scholar
Colarco, P.R., Toon, O.B., Reid, J.S., Livingston, J.M., Russel, P.B., Redmann, J., Schmid, B., Maring, H.B., Savoie, D., Welton, E.J., Campbell, J.R., Holben, B.N., and Levy, R. Saharan dust transport to the Caribbean during PRIDE: 2. Transport, vertical profiles and deposition in simulations of in situ and remote sensing observations. Journal of Geophysical Research 103, (2003). 8590 Google Scholar
deMenocal, P., Oritz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M. Abrupt onset and termination of the African humid period: rapid climate response to gradual insolation forcing. Quaternary Science Reviews 19, (2000). 347361.Google Scholar
de Vernal, A., Rochon, A., Turon, J.-L., and Matthiessen, J. Organic-walled dinoflagellate cysts: palynological tracers of sea-surface conditions in middle to high latitude marine environments. Geobios 30, (1997). 905920.CrossRefGoogle Scholar
Dupont, L.M., and Agwu, C.O.C. Environmental control of pollen grain distribution patterns in the Gulf of Guinea and offshore NW-Africa. Geologische Rundschau 80, (1991). 567589.CrossRefGoogle Scholar
Faegri, K., Iversen, J. Faegri, K., Kaland, P.E., and Krzywinski, K. Textbook of pollen analysis. IV Edition (1989). Wiley, New York.Google Scholar
Fensome, R.A., and Williams, G.L. The Lentin and Williams index of fossil dinoflagellate, 2004 Edition. American Association of Stratigraphic Palynologist Foundation contributions series 42. (2004). 909 pp Google Scholar
Gac, J.Y., and Kane, A. Le fleuve Sénégal: Bilan hydrologique et flux continentaux de matières particulaires à l'embouchure. Sciences géologique bulletin 39, 1 (1986). 99130. Strasbourg CrossRefGoogle Scholar
Gac, J.Y., Kane, A., Saos, J.L., Carn, M., and Villeneuve, J.F. L'invasion marine dans la basse vallée du fleuve Sénégal. (1985). ORSTOM, Dakar-Hann. 64 Google Scholar
Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, (2000). 189211.Google Scholar
Holzwarth, U., Esper, O., and Zonneveld, K. Distribution of organic-walled dinoflagellate cysts in shelf surface sediments of the Benguela upwelling system in relationship to environmental conditions. Marine Micropaleontology 64, (2007). 91119.CrossRefGoogle Scholar
Hooghiemstra, H. Changes of major wind belts and vegetation zones in NW Africa 20,000–5000 yr B.P., as deduced from a marine pollen record near Cap Blanc. Review of Palaeobotany and Palynology 55, (1988). 101140.Google Scholar
Hooghiemstra, H. Palynological records from northwest African marine sediments: a general outline of the interpretation of the pollen signal. Philosophical Transactions of the Royal Society of London B 318, (1988). 431449.Google Scholar
Hooghiemstra, H., and Agwu, C.O.C. Distribution of palynomorphs in marine sediment: a record for seasonal wind patterns over NW Africa and adjacent Atlantic. Geologische Rundschau 75, (1986). 8195.Google Scholar
Hooghiemstra, H., Lézine, A.M., Leroy, S.A.G., Dupont, L.M., and Marret, F. Late Quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quaternary International 148, (2006). 2944.CrossRefGoogle Scholar
Hopkins, J.A., and McCarthy, F.M.G. Post-depositional palynomorph degradation in Quaternary shelf sediments: a laboratory experiment studying the effects of progressive oxidation. Palynology 26, (2002). 167184.Google Scholar
Hsu, C.P.F., and Wallace, J.M. The global distribution in annual and semiannual cycles in precipitation. Monthly Weather Review 104, 9 (1976). 10931101.2.0.CO;2>CrossRefGoogle Scholar
Johnson, J., and Stevens, I. A fine resolution model of the eastern North Atlantic between the Azores, the Canary Islands and the Gibraltar straight. Deep-sea Research I 47, (2000). 875899.CrossRefGoogle Scholar
Lamb, H.F., Gasse, F., Benkaddour, A., El Hamouti, N., van der Kaars, S., Perkins, W.T., Pearce, N.J., and Roberts, C.N. Relation between century-scale Holocene arid intervals in tropical and temperate zones. Nature 373, (1995). 134136.Google Scholar
Lézine, A.M. Les variations de la couverture forestière mésophile d'Afrique occidentale au cours de l'Holocène. C. R. Académie des Sciences Paris t.307 Série II (1988). 439445.Google Scholar
Lézine, A.M. Late quaternary vegetation and climate of the Sahel. Quaternary Research 2, (1989). 317334.Google Scholar
Lézine, A.M. La mangrove ouest africaine, signal des variations du niveau marin et des conditions régionales du climat au cours de la dernière déglaciation. Bulletin de société géologique 167, (1996). 743752. n°6 Google Scholar
Lézine, A.M., and Casanova, J. Pollen and hydrological evidence for the interpretation of past climates in tropical West Africa during the Holocene. Quaternary Science Reviews 8, 45– 55, (1989). Google Scholar
Lézine, A.M., and Chateauneuf, J.-J. Peat in the “Niayes” of Senegal: depositional environment and Holocene evolution. Journal of African Earth Sciences 12, (1991). 171179.Google Scholar
Lézine, A.M., Turon, J.L., and Buchet, G. Pollen analyses off Senegal: evolution of the coastal palaeoenvironment during the last deglaciation. Journal of Quaternary science 10, (1995). 95105.Google Scholar
Maley, J., and Brenac, P. Vegetation dynamics, palaeoenvironments and climatic change in the forests of western Cameroon during the last 28000 years B.P.. Review of Palaeobotany and Palynology 99, (1998). 157187.CrossRefGoogle Scholar
Marchant, R., and Hooghiemstra, H. Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth Science Reviews 66, (2004). 217260.Google Scholar
Margalef, R. Assessment of the effects on plankton. Pearson, E.A., and De Farja Fragipane, E. Marine Pollution and Marine Waste Disposal Proceedings of the 2nd International Congress, san Remo, 17–21 December 1973. (1973). 301306.Google Scholar
Marret, F., and de Vernal, A. Dinoflagellate cyst distribution in surface sediments of the Southern Indian Ocean. Marine Micropaleontology 29, (1997). 367392.Google Scholar
Marret, F., and Zonneveld, K. Atlas of modern organic-walled dinoflagellate cyst distribution. Review of Palaeobotany and Palynology 125, (2003). 1200.Google Scholar
McIntosh, S.K., (1999). A tale of two floodplains: comparative perspectives on the emergence of complex societies and urbanism in the Middle Niger and Senegal Valleys. In Proceedings of the Second World Archaeological Congress Intercongress, Mombasa, P. Sinclair, ed. Published on the Uppsala University website: http://www.arkeologi.uu.se/afr/projects/BOOK/Mcintosh/mcintosh.htm.Google Scholar
McIntosh, S.K. The Holocene prehistory of West Africa (10,000–1000 BP). Akeyeampong, E.K. Themes in West Africa's History. (2006). Ohio University press, Athens.Google Scholar
McIntosh, S.K., and McIntosh, R. Current directions in West African prehistory. Annual Reviews of Anthropology 12, (1983). 215258.Google Scholar
Meggers, H., Freudenthal, T., Nave, S., Targarona, J., Abrantes, F., and Helmke, P. Assessment of geochemical and micropaleontological sedimentary parameters as proxies of surface water properties in the Canary Islands region. Deep Sea Research II 49, (2002). 36313654.CrossRefGoogle Scholar
Mittelstaedt, E. The ocean boundary along the northwest African coast: circulation and oceanographic properties at the sea surface. Progress in Oceanography 26, (1991). 307355.Google Scholar
Mulitza, S., Bouimetarhan, I., Brüning, M., Freesemann, A., Gussone, N., Filipsson, H., Heil, G., Hessler, S., Jaeschke, A., Johnstone, H., Klann, M., Klein, F., Küster, K., März, C., McGregor, H., Minning, M., Müller, H., Ochsenhirt, W.T., Paul, A., Scewe, F., Schulz, M., Steinlöchner, J., Stuut, J.B., Tjallingii, R., Dobeneck, T., Wiesmaier, S., Zabel, M., and Zonneveld, K. Report and Preliminary Results of Meteor Cruise M65/1, Dakar–Dakar, 11.06.–01.07.2005. (2006). Fachbereich Geowissenschaften, Universität Bremen, Berichte. No. 252, 149 pp.Google Scholar
Mulitza, S., Prange, M., Stuut, J.B., Zabel, M., von Dobeneck, T., Itambi, C.A., Nizou, J., Schulz, M., and Wefer, G. Sahel Megadrought triggered by glacial slowdowns of Atlantic meridional overturning. Paleoceanography 23, (2008). PA4206 Google Scholar
Nave, S., Freitas, P., and Abrantes, F. Coastal upwelling in the Canary Island region: spatial variability reflected by the surface sediment diatom record. Marine Micropaleontology 42, (2001). 123.Google Scholar
Nicholson, S.E. The nature of rainfall variability over Africa on time scales of decades to millenia. Global and planetary change 26, (2000). 137158.Google Scholar
Nicholson, S.E., and Grist, J.P. The seasonal evolution of the atmospheric circulation over West Africa and Equatorial Africa. Journal of Climate 16, 7 (2003). 10131030.Google Scholar
Nykjaer, L., and Van Camp, L. Seasonal and interannual variability of coastal upwelling along Northwest Africa and Portugal from 1981 to 1991. Journal of Geophysical Research 99, (1994). 1419714207.Google Scholar
Prospero, J.M. Mineral-aerosol transport to the North Atlantic and North Pacific: the impact of African and Asian sources. Knap, A.H. The Long-Range Atmospheric Transport of Natural and Contaminant Substances. Mathematical and Physical Sciences (1990). Kluwer Acadameic publishers, Dodrecht. 5986.Google Scholar
Prospero, J.M., and Nees, R.T. Impact of the North African drought and El Nino on mineral dust in the Barbados trade winds. Nature 320, (1986). 735738.CrossRefGoogle Scholar
Prospero, J.M., Ginoux, P., Torres, O., Nicholson, S.E., and Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total zone mapping spectrometer (TOMS) absorbing aerosol product. Review of Geophysics 40, (2002). 21/2–31.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Blackwell, P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 Terrestrial radiocarbon age calibration, 26-0 ka BP. Radiocarbon 46, (2004). 10591086.Google Scholar
Rochon, A., de Vernal, A., Turon, J.L., Matthiessen, J., and Head, M.J. Distribution of recent dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in relation to sea-surface parameters. American Association of Stratigraphic Palynologists Foundation 23, (1999). 1150.Google Scholar
Salzmann, U., and Waller, M. The Holocene vegetation history of the Nigerian Sahel based on multiple pollen profiles. Review of Palaeobotany and Palynology 100, (1998). 3972.Google Scholar
Salzmann, U., Hoelzmann, P., and Morczinek, I. Late Quaternary climate and vegetation of the Sudanian zone of Northeast Nigeria. Quaternary Research 58, (2002). 7383.Google Scholar
Sarnthein, M., Thiede, J., Pflaumann, U., Erlenkeuser, H., Fütterer, D., Koopmann, B., and Lange, H.E.S. Atmospheric and oceanic circulation patterns off Northwest Africa during the past 25 million years. Von Rad, U., Hinz, K., Sarnthein, M., and Seibold, E. Geology of the Northwest African Continental Margin. (1982). Springer, Berlin. 584604.Google Scholar
Schefuβ, E., Schouten, S., and Schneider, R.R. Climatic controls on central African hydrology during the past 20,000 years. Nature 437, (2005). 10031006.Google Scholar
Servant, M., and Servant-Vildary, S. L'Environnement quaternaire du basin du Tchad. Williams, M.A.J., and Faure, H. The Sahara and the Nile. (1980). Balkema, Rotterdam. 133162.Google Scholar
Spalding, M., Blasco, F., and Field, C. World mangrove Atlas. The International Society for mangrove Ecosystems (ISME). (1997). Smith Settle, Otley, UK. 178 Google Scholar
Stuiver, M., Reimer, P. J., Reimer, R. W., (2005). CALIB 5.0.. (WWW program and documentation).Google Scholar
ter Braak, C.J.F., and Smilauer, P. Canoco 4. (1998). Centre for Biometry, Wageningen.Google Scholar
Versteegh, G.J.M., and Zonneveld, K.A.F. Use of selective degradation to separate preservation from productivity. Geology 30, (2002). 615618.Google Scholar
Vincens, A., Lezine, A.M., Buchet, G., Lewden, D., and le Thomas, A. African pollen data base inventory of tree and shrub pollen types. Review of Palaeobotany and Palynology 145, (2007). 135141.Google Scholar
Weldeab, S., Schneider, R.R., Kölling, M, and Wefer, G. Holocene African droughts relate to eastern equatorial Atlantic cooling. Geology 12, (2005). 981984.Google Scholar
White, F. The vegetation of Africa. (1983). UNESCO, Paris. 384 Google Scholar
World Resources Institute, (2003). http://www.wri.org/.Google Scholar
Zonneveld, K.A.F. New species of organic walled dinoflagellate cysts from modern sediments of the Arabian Sea (Indian Ocean). Review of Palaeobotany and Palynology 97, (1997). 319337.Google Scholar
Zonneveld, K.A.F., and Jurkschat, T. Bitectatodinium spongium (Zonneveld, 1997) Zonneveld et Jurkschat comb.nov. from modern sediment and sediment trap samples of the Arabian Sea (northwestern Indian Ocean): taxonomy and ecological affinity. Review of Palaeobotany and Palynology 106, (1999). 153169.Google Scholar
Zonneveld, K.A.F., Brummer, G.A., (2000). Ecological significance, transport and preservation of organic-walled dinoflagellate cysts in the Somali Basin, NW Arabian sea. Deep-sea research. Part 2,9, 22292256.Google Scholar
Zonneveld, K.A.F., Hoek, R., Brinkhuis, H., and Willems, H. Geographical distributions of organic-walled dinoflagellate cysts in surface sediments of the Benguela upwelling Region and their relationship to upper ocean conditions. Progress in Oceanography 48, (2001). 2572.Google Scholar
Zonneveld, K.A.F., Bockelmann, F., and Holzwarth, U. Selective aerobic degradation of organic walled dinoflagellates as tool to quantify past net primary production and bottom water oxygen concentrations. Marine Geology 237, (2007). 109126.Google Scholar