Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T02:27:42.425Z Has data issue: false hasContentIssue false

Paleoecology of a ciénega at the Mockingbird Gap Site, Chupadera Draw, New Mexico

Published online by Cambridge University Press:  17 October 2017

Manuel R. Palacios-Fest*
Affiliation:
Terra Nostra Earth Sciences Research, LLC, Tucson, Arizona 85740, USA
Vance T. Holliday
Affiliation:
School of Anthropology, University of Arizona, Tucson, Arizona 85721, USA
*
*Corresponding author at: Terra Nostra Earth Sciences Research, LLC, Tucson, Arizona 85740, USA. E-mail address: mrpalacios@tnesr.com (M.R. Palacios).

Abstract

The Mockingbird Gap Clovis site is a surface archaeological site located along Chupadera Draw in central New Mexico. Coring of the draw during archaeological investigation of the Clovis assemblage on the adjacent uplands revealed evidence for a regionally rare continuous, stratified depositional record beginning immediately before the Younger Dryas chronozone (YDC). Thirty sediment samples from the draw adjacent to the archaeological site were analyzed for microinvertebrates (ostracodes and mollusks) and gyrogonites (calcareous algae) to reconstruct its environmental history. Wet-dry cycles marked the presence/absence of microfossils. Based upon microfossils, this investigation highlights environmental change marked by the evolution from wetter/cooler to warmer/drier conditions at the Mockingbird Gap site and its response to climate change and groundwater fluctuations during and after the YDC. Four biofacies are recognized: the pre-Ciénega setting is sterile. Holarctic species near the base of core 08-1 indicate cooling conditions prior to 13,000 cal yr BP during the early Ciénega phase. Warmer, more saline conditions characterize the late-Ciénega biofacies between 11,000 and 10,000 cal yr BP. Presence of gypsum during formation of the post-Ciénega phase and the most salinity tolerant species after 10,000 cal yr BP is consistent with the aridification typifying the early Holocene.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, K.R., Smith, S.J., Palacios-Fest, M.R., 2002. Pollen and microinvertebrates from modern earthen canals and other fluvial environments along the Middle Gila River, Central Arizona: implications for archaeological interpretation. In Gila River Indian Community Anthropological Research Papers No. 1, Gila River Indian Community Cultural Resource Management Program, Sacaton, Arizona, pp. 1–76.Google Scholar
Allen, B.D., and Anderson, R.Y., 2000. A continuous, high-resolution record of late Pleistocene climate variability from the Estancia basin, New Mexico, GSA Bulletin 112: 1444–1458.Google Scholar
Allen, G.O., 1950. British Stoneworts (Charophyta): Arbroath. T. Buncle and Co. Ltd., Tintern, United Kingdom.Google Scholar
Anderson, D.H., Darring, S., Benke, A.C., 1998. Growth of crustacean meiofauna in a forested floodplain swamp: implications for biomass turnover. Journal of the North American Benthological Society 17, 2136.CrossRefGoogle Scholar
Anderson, R.Y., Allen, B.D., Menking, K.M., 2002. Geomorphic expression of abrupt climate change in southwestern North America at the Glacial Termination. Quaternary Research 57, 371381.CrossRefGoogle Scholar
Ballenger, J.A.M., Holliday, V.T., Kowler, A.L., Reitze, W.T., Prasciunas, M.M., Miller, D.S., Windingstad, J.D., 2011. Evidence for Younger Dryas global climate oscillation and human response in the American Southwest. Quaternary International 242, 502519.CrossRefGoogle Scholar
Benson, L.V., Currey, D.R., Dorn, R.I., Lajoie, K.R., Oviatt, C.G., Robinson, S.W., Smith, G.I., Stine, S., 1990. Chronology of expansion and contraction of four Great Basin lake systems during the past 35,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 78, 241286.CrossRefGoogle Scholar
Benson, L.V., Currey, D.R., Lao, Y., Hostetler, S.W., 1992. Lake-size variations in the Lahontan and Bonneville basins between 13,000 and 9000 c-14 yr B.P. Paleogeography, Paleoclimatology, Paleoecology 95, 1932.CrossRefGoogle Scholar
Benson, L.V., Burdett, J.W., Lund, S.P., Kashgarian, M., Mensing, S., 1997. Nearly synchronous climate change in the Northern Hemisphere during the last glacial termination. Nature 388, 263265.CrossRefGoogle Scholar
Bequaert, J.C., Miller, W.B., 1973. The Mollusks of the Arid Southwest. University of Arizona Press, Tucson.Google Scholar
Cohen, A.S., 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press, Oxford.CrossRefGoogle Scholar
Cohen, A.S., Palacios-Fest, M.R., Negrini, R.M., Wigand, P.E., Erbes, D., 2000. High resolution continental paleoclimate record for the middle–late Pleistocene from Summer Lake, Oregon, USA, II: evidence of paleoenvironmental change from sedimentology, paleontology and geochemistry. Journal of Paleolimnology 24, 151182.CrossRefGoogle Scholar
Curry, B.B., 1999. An environmental tolerance index for ostracodes as indicators of physical and chemical factors in aquatic habitats. Palaeogeography, Palaeoclimatology, Palaeoecology 148, 5163.CrossRefGoogle Scholar
Davis, O.K., 1989. The regionalization of climatic change in Western North America. In: Leinen, M., Sarnthein, M. (Eds.), Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Kluwer Academic Press, Boston, pp. 617636.CrossRefGoogle Scholar
De Deckker, P., 1983. The limnological and climatic environment of modern ostracodes in Australia—a basis for paleoenvironmental reconstruction. In: Maddocks, R.F. (Ed.), Proceedings of the Eighth International Symposium on Ostracodae. University of Houston, Houston, pp. 250–254.Google Scholar
De Deckker, P., Forester, R.M., 1988. The use of ostracodes to reconstruct paleoenvironmental records. In: De Deckker, P., Colin, J.P., Peypouquet, J.P. (Eds.), Ostracoda in the Earth Sciences. Elsevier, Amsterdam, pp. 175200.Google Scholar
De Francesco, C., Hassan, G.S., 2009. The significance of molluscs as paleoecological indicators of freshwater systems in central-western Argentina. Palaeogeography, Palaecology, Palaeoclimatology 274, 105113.CrossRefGoogle Scholar
Delorme, L.D., 1969. Ostracodes as Quaternary paleoecological indicators. Canadian Journal of Earth Sciences 6, 14711476.CrossRefGoogle Scholar
Delorme, L.D., 1989. Methods in Quaternary ecology #7: freshwater ostracodes. Geoscience Canada 16, 8590.Google Scholar
Delorme, L.D., Zoltai, S.C., 1984. Distribution of an arctic ostracode fauna in space and time. Quaternary Research 21, 6573.CrossRefGoogle Scholar
Denton, G.H., Alley, R.B., Comer, G., Broecker, W.S., 2005. The role of seasonality in abrupt climate change. Quaternary Science Reviews 24, 11591182.CrossRefGoogle Scholar
Dillon, R.T. Jr., 2000. The Ecology of Freshwater Molluscs. New York, Cambridge University Press.CrossRefGoogle Scholar
Dillon, R.T. Jr., Stewart, T.W., 2003. The freshwater gastropods of South Carolina: Electronic document, http://www.cofc.edu/~FWGNA/FWGSC (accessed May 14, 2011).Google Scholar
Ellis, C.J., Carr, D.H., Loebel, T.J., 2011. The Younger Dryas and Late Pleistocene peoples of the Great Lakes region. Quaternary International 242, 534545.CrossRefGoogle Scholar
Eugster, H.P., Hardie, L.A., 1978. Saline lakes. In: Lerman, A. (Ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag, New York, pp. 237293.CrossRefGoogle Scholar
Fedje, D., Fedje, Q.M., Lacourse, T., McLaren, D., 2011. Younger Dryas environments and archaeology on the Northwest Coast of North America. Quaternary International 242, 452462.CrossRefGoogle Scholar
Forester, R.M., 1983. Relationship of two lacustrine ostracode species to solute composition and salinity: implications for paleohydrochemistry. Geology 11, 435438.2.0.CO;2>CrossRefGoogle Scholar
Forester, R.M., 1986. Determination of the dissolved anion composition of ancient lakes from fossil ostracodes. Geology 14, 796799.2.0.CO;2>CrossRefGoogle Scholar
Forester, R.M., 1987. Late Quaternary paleoclimate records from lacustrine ostracodes. In: Ruddiman, W.F., Wright, H.E., Jr. (Eds.), The Geology Of North America, Vol. K-3, North America And Adjacent Oceans During The Last Deglaciation. The Geological Society of America, Boulder, pp. 261276.Google Scholar
Forester, R.M., 1988. Nonmarine calcareous microfossils sample preparation and data acquisition procedures. U.S. Geological Survey Technical Procedure HP-78, R1, pp. 1–9.Google Scholar
Forester, R.M., 1991. Ostracode assemblages from springs in the western United States: Implications for paleohydrology. Memoirs of the Entomological Society of Canada 155, 181201.CrossRefGoogle Scholar
Forester, R.M., Smith, A.J., Palmer, D.F., Curry, B.B., 2005. North American Non-Marine Ostracode Database “NANODe” Version 1, December. http://www.kent.edu/NANODe (accessed April 1, 2011).Google Scholar
Goebel, T., Hockett, B., Adams, K.D., Rhode, D., Graf, K., 2011. Climate, environment, and humans in North America’s Great Basin during the Younger Dryas, 12,900B11,600 calendar years ago. Quaternary International 242, 479501.CrossRefGoogle Scholar
Hall, S.A., Penner, W.L., Palacios-Fest, M.R., Metcalf, A.L., Smith, S.J., 2012. Cool, wet conditions late in the Younger Dryas in semi-arid New Mexico. Quaternary Research 77, 8795.CrossRefGoogle Scholar
Hamilton, M.J., Buchanan, B., Huckell, B.B., Holliday, V.T., 2013. Clovis paleoecology and lithic technology in the Central Rio Grande Rift Region, New Mexico. American Antiquity 78, 248265.CrossRefGoogle Scholar
Hawley, J.W. (Ed.), 1978. Guidebook to the Rio Grande Rift in New Mexico and Colorado (Circular No. 163). New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico.CrossRefGoogle Scholar
Hawley, J.W., 1993. Geomorphic setting and Late Quaternary history of pluvial-lake basins in the southern New Mexico region. Open-File Report No. 391. New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico.CrossRefGoogle Scholar
Hawley, J.W., 2005. Five million years of landscape evolution in New Mexico. In: Lucas, S.G., Morgan, G.S., Zeigler, K.E. (Eds.), New Mexico’s Ice Ages. New Mexico Museum of Natural History and Science Bulletin No. 28, 9–93.Google Scholar
Haynes, C.V. Jr., 1991. Geoarchaeological and paleohydrological evidence for a Clovis age drought in North America and its bearing on extinction. Quaternary Research 35, 438450.CrossRefGoogle Scholar
Haynes, C.V. Jr., 1995. Geochronology of paleoenvironmental change, Clovis type site, Blackwater Draw, New Mexico. Geoarchaeology 10, 317388.CrossRefGoogle Scholar
Haynes, C.V. Jr., 2008. Younger Dryas “black mats” and the Rancholabrean termination in North America. Proceedings of the National Academy of Sciences 105, 65206525.CrossRefGoogle ScholarPubMed
Haynes, C.V. Jr., Huckell, B.B., 2007. Murray Springs, a Clovis Site with Multiple Activity Areas in the San Pedro Valley, Arizona. Anthropological Papers of the University of Arizona, No. 71. University of Arizona Press, Tucson.Google Scholar
Haynes, C.V. Jr., Stanford, D.J., Jodry, M., Dickenson, J., Montgomery, J.L., Shelley, P.H., Rovner, I., Agogino, G.A., 1999. A Clovis well at the type site 11,500 BC: The oldest prehistoric well in North America. Geoarchaeology 14, 455470.3.0.CO;2-L>CrossRefGoogle Scholar
Hendrickson, D.A., Minckley, W.L., 1984. Ciénegas- Vanishing climax communities of the American Southwest. Desert Plants 6, 131175.Google Scholar
Hill, C.L., Wendorf, F., Sears, P.B., Papazian., E., 2008. Late glacial environments and paleoecology at Blackwater Draw, Near Clovis, New Mexico. In: Sulgostowska, Z., Tomaszewski, J. (Eds.), Man, Millenia, Environment: Studies in Honour of Romuald Schild. Institute of Archaeology and Ethnology, Polish Academy of Sciences, Warsaw, pp. 7986.Google Scholar
Holliday, Vance T., 1985. Archaeological Geology of the Lubbock Lake Site, Southern High Plains of Texas. Geological Society of America Bulletin 96, 14831492.2.0.CO;2>CrossRefGoogle Scholar
Holliday, V.T., 1997. Paleoindian studies, geoarchaeology, and the Southern High Plains, Chapter 1. In: Holliday, V.T. (Ed.), Paleoindian Geoarchaeology of the Southern High Plains. University of Texas Press, Austin.Google Scholar
Holliday, V.T., 2000a. Folsom drought and episodic drying on the Southern High Plains from 10,900–10,200 14C yr B.P. Quaternary Research 53, 112.CrossRefGoogle Scholar
Holliday, V.T., 2000b. The Evolution of Paleoindian Geochronology and Typology on the Great Plains. Geoarchaeology 15, 227290.3.0.CO;2-A>CrossRefGoogle Scholar
Holliday, V.T., 2001. Stratigraphy and geochronology of upper Quaternary eolian sand on the Southern High Plains of Texas and New Mexico, United States. Geological Society of America Bulletin 113, 88108.2.0.CO;2>CrossRefGoogle Scholar
Holliday, V.T., Huckell, B.B., Weber, R.H., Hamilton, M.J., Reitze, W.T., Mayer, J.H., 2009. Geoarchaeology of the Mockingbird Gap (Clovis) Site, Jornada del Muerto, New Mexico. Geoarchaeology 24, 348370.CrossRefGoogle Scholar
Holliday, V.T., Killick, M.G., 2013. An early Paleoindian bead from the Mockingbird Gap Site, New Mexico. Current Anthropology 54, 8595.CrossRefGoogle Scholar
Holmes, J.A., Chivas, A.R., 2002. Ostracod shell chemistry–Overview. In: Holmes, J.A., Chivas, A.R. (Eds.), The Ostracoda: Applications in Quaternary Research. Geophysical Monograph 131. American Geophysical Union, Washington, DC, pp. 185204.CrossRefGoogle Scholar
Holmgren, C.A., Peñalba, M.C., Rylander, K.A., Betancourt, J.L., 2003. A 16,000 yr. B.P. packrat midden series from the USA-Mexico Borderlands. Quaternary Research 60, 319329.CrossRefGoogle Scholar
Horne, D.J., Cohen, A., Martens, K., 2002. Taxonomy, morphology and biology of Quaternary and living Ostracoda. In: Holmes, J.A., Chivas, A.R. (Eds.), The Ostracoda: Applications in the Quaternary Research. Geophysical Monograph 131. American Geophysical Union, Washington, DC, pp. 536.CrossRefGoogle Scholar
Huckell, B.B., Holliday, V.T., Hamilton, M.J., Sinkovec, C., Merriman, C., Shackley, M.S., Weber, R.H., 2008. The Mockingbird Gap Clovis site: 2007 investigations. Current Research in the Pleistocene 25, 9597.Google Scholar
Irwin-Williams, C., Haynes, C.V., 1970. Climatic change and early population dynamics in the Southwestern United States. Quaternary Research 1, 5971.CrossRefGoogle Scholar
Kaufman, D.S., O’Brien, G., Mead, J.I., Bright, J., Umhoefer, P., 2002. Late Quaternary spring-fed deposits of the Grand Canyon and their implication for deep lava-dammed lakes. Quaternary Research 58, 329340.CrossRefGoogle Scholar
Kilby, D., Crawford, G., 2013. Current research and investigations at Blackwater Draw, NM. NewsMAC: Newsletter of the New Mexico Archaeology Council 2013-2, 16.Google Scholar
Kirkpatrick, D.T., Weber, R.H., 1996. Quaternary geology and archaeology of Lake Trinity Basin, White Sands Missile Range, New Mexico. In: Duran, M.S., Kirkpatrick, D.T. (Eds.), La Jornada: Papers in Honor of William F. Turney. Archaeological Society of New Mexico, Las Cruces, pp. 109127.Google Scholar
Külköylüoğlu, O., 2009. Ecological succession of freshwater Ostracoda (Crustacea) in a newly developed rheocrene spring (Bolu, Turkey). Turkish Journal of Zoology 33, 115123.Google Scholar
Lothrop, J.C., Newby, P.E., Spiess, A.E., Bradley, J.W., 2011. Paleoindians and the Younger Dryas in the New England-Maritimes region. Quaternary International 242, 546569.Google Scholar
Martin, P.S., 1963. The Last 10,000 Years, a Fossil Pollen Record of the American Southwest. University of Arizona Press, Tucson.Google Scholar
Meeks, S.C., Anderson, D.G., 2012. Evaluating the effects of the Younger Dryas on human population histories in the Southeastern United States. In: Eren, M.I. (Ed.), Hunter-Gatherer Behavior: Human Response During the Younger Dryas. Left Coast Press, Walnut Creek, California, pp. 111138.Google Scholar
Mehringer, P.S. Jr., Haynes, C.V. Jr., 1965. The pollen evidence for the environment of early man and extinct mammals at the Lehner mammoth site, southeastern Arizona. American Antiquity 31, 1723.CrossRefGoogle Scholar
Meltzer, D.J., Holliday, V.T., 2010. Would North American Paleoindian have noticed Younger Dryas age climate change? Journal of World Prehistory 23, 141.CrossRefGoogle Scholar
Mezquita, F., Tapia, G., Roca, J.R., 1999. Ostracoda from springs on the eastern Iberian Peninsula: Ecology, biogeography and paleolimnological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 148, 6581.CrossRefGoogle Scholar
Miksicek, C.H., 1989. Snails, seeds, and charcoal: macrofossils from Las Acequias Canals. In: Ackerly, N.W., Henderson, T.K. (Eds.), Prehistoric Agricultural Activities on the Lehi-Mesa Terrace: Perspectives on Hohokam Irrigation Cycles. Northland Research, Flagstaff, Arizona, pp. 235261.Google Scholar
Miller, D.S., Holliday, V.T., Bright, J., 2013. Clovis across the continent. In: Graf, K.E., Ketron, C.V., Waters, M.R. (Eds.), Paleoamerican Odyssey. Texas A&M Press, College Station, Texas, pp. 207220.Google Scholar
Palacios-Fest, M.R., 1994. Nonmarine ostracode shell chemistry from Hohokam irrigation canals in Central Arizona: a paleohydrochemical tool for the interpretation of prehistoric human occupation in the North American Southwest. Geoarchaeology 9, 129.CrossRefGoogle Scholar
Palacios-Fest, M.R., 2002. Significance of ostracode studies in geoarchaeology: a way to analyze the physical environment where ancient civilizations developed. Kiva 68, 4966.CrossRefGoogle Scholar
Palacios-Fest, M.R., Cohen, A.S., Anadón, P., 1994. Use of ostracodes as paleoenvironmental tools in the interpretation of ancient lacustrine records. Revista Española de Micropaleontología 9, 145164.Google Scholar
Palacios-Fest, M.R., Mabry, J.B., Nials, F., Holmlund, J.P., Miksa, E., Davis, O.K., 2001. Early irrigation systems in Southeastern Arizona: the ostracode perspective. Journal of South American Earth Sciences 14, 541555.CrossRefGoogle Scholar
Pazzaglia, F.J., Hawley, J.W., 2004. Neogene (rift flank) and Quaternary geology and geomorphology. In: Mack, G.H., Giles, K.A. (Eds.), The Geology of New Mexico: A Geologic History. New Mexico Geological Society Special Publication No. 11. New Mexico Geological Society, Socorro, New Mexico, pp. 407–437.Google Scholar
Pokorný, V., 1978. Ostracodes. In: Haq, B.U., Boersma, A. (Eds.), Introduction to Marine Micropaleontology. Elsevier, New York, pp. 109149.Google Scholar
Quade, J., Forester, R.M., Pratt, W.L., Carter, C., 1998. Black mats, spring-fed streams, and late-glacial-age recharge in the southern Great Basin. Quaternary Research 49, 129148.CrossRefGoogle Scholar
Rasmussen, S., Andersen, K., Svensson, A., Steffensen, J., Vinther, B., Clausen, H., Andersen, M., Johnsen, S., Larsen, L., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M., Ruth, U., 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111, 116.CrossRefGoogle Scholar
Reeder, L.A., Erlandson, J.M., Rick, T.C., 2011. Younger Dryas environments and human adaptations on the West Coast of the United States and Baja California. Quaternary International 242, 463478.CrossRefGoogle Scholar
Rutherford, J., 2000. Ecology Illustrated Field Guides. http://info.wlu.ca/~wwwbiol/bio305/Database (accessed July 10, 2011).Google Scholar
Sanchez, M.G., Holliday, V.T., Gaines, E., Arroyo-Cabrales, J., Martínez-Tagüeña, N., Kowler, A., Lange, T., Hodgins, G., Mentzer, S., Sanchez-Morales, I., 2014. Human (Clovis)- gomphothere (Cuvieronius sp.) association ~13,390 caibrated yr BP in Sonora, Mexico. Proceedings of the National Academy of Sciences 111, 1097210977.CrossRefGoogle Scholar
Shane, L.C.K., Anderson, K.H., 1993. Intensity, gradients, and reversals in late glacial environmental change in east-central North America. Quaternary Science Reviews 12, 307320.CrossRefGoogle Scholar
Sharpe, S., 2002. Solute composition: a parameter affecting the distribution of freshwater gastropods (Accessed July 7, 2011). http://wetlands.dri.edu.Google Scholar
Sharpe, S.E., 2009. Past elevations and ecosystems of Walker Lake provide a context for future management decisions. In: Collopy, M., Thomas, J. (Eds.), Restoration of a Desert Lake in an Agriculturally Dominated Watershed: The Walker Lake Basin. Dessert Research Institute and University of Nevada, Reno, Lake Tahoe, April 2009.Google Scholar
Stuiver, M., Groots, P.M., Braziunas, T.F., 1995. The GISP δ18O climate record of the past 16,000 years and the role of the sun, oceans, and volcanoes. Quaternary Research 44, 341354.CrossRefGoogle Scholar
United States Department of Agriculture (USDA). 2003. Soils Survey Manual. University Press of the Pacific, Honolulu, pp. 207209.Google Scholar
Van Devender, T.R., 1990. Late Quaternary vegetation and climate of the Chihuahuan Desert, United States and Mexico. In: Betancourt, J.L., Van Devender, T.R., Martin, P.S. (Eds.), Packrat Middens: The Last 40,000 Years of Biotic Change. University of Arizona Press, Tucson, pp. 104133.Google Scholar
Vokes, A.W., Miksicek, C.H., 1987. Snails, clams, and canals: an analysis of nonmarine molluscan remains. In: Masse, W.B. (Ed.), Archaeological Investigations of Portions of the Las Acequias–Los Muertos Irrigation System: Testing and Partial Data Recovery Within the Tempe Section of the Outer Loop Freeway System, Maricopa County, Arizona. Archaeological Series No. 176. Arizona State Museum, Tucson, pp. 177–187.Google Scholar
Waters, M.R., Stafford, T.W., 2007. Redefining the age of Clovis: implications for the peopling of the New World. Science 315, 11221126.CrossRefGoogle Scholar
Webb, W.F., 1942. United States Mollusca: A Descriptive Manual of Many of the Marine, Land and Fresh Water Shells of North America, North of Mexico. 1st ed. Bookcraft Press, New York.Google Scholar
Weber, R.H., 1997. Geology of Mockingbird Gap site in central New Mexico. In: Duran, M.S., Kirkpatrick, D.T. (Eds.), Layers of Time: Papers in Honor of Robert H. Weber. Archaeological Society of New Mexico, Las Cruces, pp. 115122.Google Scholar
Weber, R.H., Agogino, G.A., 1997. Mockingbird Gap Paleoindian site: excavations in 1967. In: Duran, M.S., Kirkpatrick, D.T. (Eds.), Layers of Time: Papers in Honor of Robert H. Weber. Archaeological Society of New Mexico, Las Cruces, pp. 123127.Google Scholar
Whatley, R., 1983. Some simple procedures for enhancing the use of Ostracoda in palaeoenvironmental analysis. NPD Bulletin 2, 129146.Google Scholar
Wigand, P.E., 2007. Southwestern North America Postglacial Pollen Records. In: Elias, S.A., Mock, C.J. (Eds.), Pollen Records, Postglacial Encyclopedia of Quaternary Science. 2nd ed. Elsevier, Amsterdam, pp. 142155.Google Scholar
Supplementary material: File

Palacios-Fest and Holliday supplementary material

Table S1

Download Palacios-Fest and Holliday supplementary material(File)
File 83.5 KB