Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T15:08:17.228Z Has data issue: false hasContentIssue false

Oxygen isotope stage 3 fluvial and eolian successions in Europe compared with climate model results

Published online by Cambridge University Press:  20 January 2017

K.o van Huissteden
Affiliation:
Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands
David Pollard
Affiliation:
Earth Systems Science Center, Pennsylvania State University, University Park, PA 16802, USA

Abstract

Fluvial and eolian successions of oxygen isotope stage 3 are compared with global (GCM) and regional climate (RCM) modeling experiments of the stage 3 and last glacial maximum climate in Europe. Differences in precipitation between stage-3 stades and interstades were minor, which is confirmed by the fluvial successions. The fluvial response to climate variation is non-uniform, and in southern Europe more pronounced than in northern Europe. The model simulations indicate a strong western winter circulation over Europe during stage 3, which is supported by the eolian deposits data. Wind speeds in the last glacial maximum simulation appear modest compared with those of stage 3, which contrasts with the abundance of eolian deposits. This suggests that during glacial climates the stabilizing effect of vegetation determines eolian sedimentation rates, rather than wind speed. Stage 3 can be divided into an older part (>45,000 cal yr B.P.) with a relatively stable landscape and moist climate and a younger part with more frequent climate change and decreasing landscape stability.

Type
Articles
Copyright
Elsevier Science (USA)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This contribution is one of a series of articles reporting the results of the Stage 3 Project (van Andel, 2002). See the Stage 3 Project website for details and databases at http://www.esc.cam.ac.uk/oistage3/Details/Homepage.html.

References

Allen, J.R.M., Brandt, U., Brauer, A., Hubberten, H.-W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J.F.W., Nowaczyk, N.R., Oberhänsli, H., Watts, W.A., Wulf, S., and Zolitschka, B. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, (1999). 740 743.CrossRefGoogle Scholar
Antoine, P., Rousseau, D.D., Lautridou, J.P., and Hatté, C. The Last Interglacial-Glacial climatic cycle in loess-palaeosols successions of northwestern France. Boreas 28, (1999). 551 563.Google Scholar
Antoine, P., Rousseau, D.D., Zöller, L., Lang, A., Munaut, A.V., Hatté, C., and Fontugne, M. High-resolution record of the last interglacial-glacial cycle in the Nussloch loess-palaeosol sequence, Upper Rhine area, Germany. Quaternary International 76/77, (2001). 211 229.CrossRefGoogle Scholar
Arnold, N., Van Andel, T.H., and Valen, V. Extent and Dynamics of the Scandinavian ice sheet during Oxygen Isotope Stage 3 (65,000-25,000 cal years B.P.). Quaternary Research 57, (2002). 37 47.CrossRefGoogle Scholar
Barron, E.J., Pollard, D. 2002. High-resolution climate simulations of oxygen isotope Stage 3 in Europe. Quaternary Research 58, 296–309Google Scholar
Bos, J.A.A., Bohncke, S.J.P., Kasse, C., and Vandenberghe, J. Vegetation and climate during the Weichselian Early Glacial and Pleniglacial in the Niederlausitz, eastern Germany-macrofossil and pollen evidence. Journal of Quaternary Science 16, (2001). 269 289.CrossRefGoogle Scholar
Buch, M.W., and Zöller, L. Gliederung und Thermolumineszenz-Chronologie der Würmlösse im Raum Regensburg. Eiszeitalter und Gegenwart 40, (1990). 63 84.Google Scholar
Cremaschi, M., Fedoroff, N., Guerreschi, A., Huxtable, J., Colombi, N., Castelletti, L., and Maspero, A. Sedimentary and pedological processes in the Upper Pleistocene loess of northern Italy. The Bagaggera sequence. Quaternary International 5, (1990). 23 38.Google Scholar
Cosby, B.J., Hornberger, G.M., Clapp, R.B., and Ginn, T.R. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resources Research 20, (1984). 682 690.CrossRefGoogle Scholar
Frechen, M. Upper Pleistocene loess stratigraphy in Southern Germany. Quaternary Geochronology 18, (1999). 243 269.Google Scholar
Frechen, M., Horváth, E., and Gabris, G. Geochronology of Middle and Upper Pleistocene loess sections in Hungary. Quaternary Research 48, (1997). 291 312.Google Scholar
Frechen, M., Zander, A., Cilek, V., and Lozek, V. Loess chronology of the Last Interglacial/Glacial cycle in Bohemia and Moravia. Czech Republic. Quaternary Science Reviews 18, (1999). 1467 1493.Google Scholar
Frechen, M., Van Vliet-Lanoë, B., and Van den Haute, P. The Upper Pleistocene loess record at Harmignies/Belgium—high resulution terrestrial archive of climate forcing. Palaeogeography, Palaeoclimatology, Palaeoecology 173, (2001). 175 195.Google Scholar
Fuller, I.C., Macklin, M.G., Lewin, J., Passmore, D.G., and Wintle, A.G. River response to high-frequency climate oscillations in southern Europe over the past 200 k.y. Geology 26, (1998). 275 278.Google Scholar
Giorgi, F., and Shields, C. Tests of precipitation parameterizations in latest version of NCAR regional climate model (RegCM) over continental United States. Journal of Geophysical Research 104-D6, (1999). 6353 6375.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S.J., and Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, (1993). 552 554.Google Scholar
Guiot, J., Pons, A., and De BeaulieuReille, M. A 140,000-year continental climate reconstruction from two European pollen records. Nature 338, (1989). 309 313.CrossRefGoogle Scholar
Guiot, J., Reille, M., De Beaulieu, J.L., and Pons, A. Calibration of the climatic signal in a new pollen sequence from La Grande Pile. Climate Dynamics 6, (1992). 259 264.Google Scholar
Haesaerts, P., Mestdagh, H., and Bosquet, D. The sequence of Remicourt (Hesbaye, Belgium): new insights on the pedo- and chronostratigraphy of the Rocourt Soil. Geologica Belgica 2, (1999). 5 27.Google Scholar
Hatté, C., Antoine, P., Fontugne, M., Lang, A., and Rousseau, D.D. δ13C of loess organic matter as a potential proxy for palaeoprecipitation. Quaternary Research 55, (2001). 33 38.Google Scholar
Haxeltine, A., and Prentice, I.C. BIOME3. an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles 10, (1996). 693 709.Google Scholar
Huijzer, AS. (1993). Cryogenic macrofabrics and macrostructures: interrelations, processes, and environmental significance. Thesis, Vrije Universiteit, Amsterdam., 245 ppGoogle Scholar
Huijzer, A.S., and Vandenberghe, J. Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe. Journal of Quaternary Science 13, (1998). 391 417.3.0.CO;2-6>CrossRefGoogle Scholar
Jöris, O., and Weninger, B. Radiocarbon calibration and the absolute chronology of the Late Glacial in “L’Europe Centrale et Septentrionale au Tardiglaciaire” (Table-ronde de Nemours, 13–16 mai 1997). Mémoires du Musée de Préhistoire d’Ile de France 7, (2000). Google Scholar
Jørgensen, M. TL-dated Weichselain deflation surfaces from northern Jutland, Denmark. Norsk Geografisk Tidsskrift 42, (1988). 225 229.Google Scholar
Juvigné, E., Hasearts, P., Mestdagh, H., Pissart, A., and Balescu, S. Révision du stratotype loessique de Kesselt (Limbourg, Belgique). Comptes-Rendus de I’Academie des Sciences de Paris 323 (série IIa), (1996). 801 807.Google Scholar
Kasse, C., Bohncke, S.J.P., and Vandenberghe, J. Fluvial periglacial environments, climate and vegetation during the Middle Weichselian in the Northern Netherlands with special reference to the Hengelo Interstadial. Mededelingen Rijks Geologische Dienst 52, (1995). 387 414.Google Scholar
Kageyama, M., Peyron, O., Pinot, S., Tarasov, P., Guiot, J., Joussaume, S., and Ramstein, G. The last glacial maximum climate over Europe and western Siberia. a PMIP comparison between models and data. Climate Dynamics 17, (2001). 23 43.CrossRefGoogle Scholar
Kolstrup, E. Climate and stratigraphy in Northwestern Europe between 30,000 B.P. and 20,000 B.P., with special reference to The Netherlands. Mededelingen van de Rijks Geologische Dienst 32, (1980). 181 253.Google Scholar
Lambeck, K., Esat, T.M., and Potter, E.K. Links between climate and sea levels for the past three million years. Nature 419, (2002). 199 206.CrossRefGoogle ScholarPubMed
Lautridou, J.P. (1985). Le cycle périglaciaire pléistocène en Europe du Nord-Ouest et plus particulièrement en Normandie. Thèse Lettres, Univ. Caen., vol. 2, 908 ppGoogle Scholar
Mania, D., and Toepfer, V. Königsaue, Gliederung, Ökologie und mittelpaläolithische Funde der letzten Eiszeit. Veröffentlichungen des Landesmuseums für Vorgeschichte in Halle 26, (1973). 1 165.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., and Shackleton, N.J. Age dating and the orbital theory of the ice ages. development of a high-resolution 0 to 300,000- year chronostratigraphy. Quaternary Research 27, (1987). 1 29.CrossRefGoogle Scholar
Matsuoka, N. Solifluction rates, processes and landforms. a global review. Earth Science Reviews 55, (2001). 107 134.CrossRefGoogle Scholar
Menke, K. The development of the middle and lower course of the Weser river during the Late Pleistocene. Zeitschrift für Geomorphologie, N.F., Suppl.-Bd 100, (1995). 1 13.Google Scholar
Mol, J.A. Fluvial response to Weichselian climate changes in the Niederlausitz (Germany). Journal of Quaternary Science 21, (1997). 43 60.Google Scholar
Mol, J., Vandenberghe, J., and Kasse, C. River response to variations of periglacial climate in mid-latitude Europe. Geomorphology 33, (2000). 131 148.Google Scholar
Musson, F.M., and Wintle, A.G. Luminescence dating of the loess profile at Dolni Vestonice, Czech republic. Quaternary Geochronology (Quaternary Science Reviews) 13, (1994). 411 416.Google Scholar
Narcisi, B. Late Quaternary eolian deposition in central Italy. Quaternary Research 54, (2000). 246 252.Google Scholar
Pécsi, M., and Richter, G. Löss. Herkunft - Gliederung - Landschaften. Zeitschrift für Geomorphologie N.F. Suppl.-Bd 98 (1996). 398 Google Scholar
Pollard, D., and Thompson, S.L. Use of a land-surface-transfer scheme (LSX) in a global climate model. the response to doubling stomatal resistance. Global and Planetary Change 10, (1995). 129 161.CrossRefGoogle Scholar
Ramrath, A., Zolitschka, B., Wulf, S., and Negendank, J.F.W. Late Pleistocene climatic variations as recorded in two Italian maar lakes (Lago di Mezzano, Lago Grande di Monticchio). Quaternary Science Reviews 18, (1999). 977 992.CrossRefGoogle Scholar
Ran, E.T.H. Dynamics of vegetation and environment during the Middle Pleniglacial in the Dinkel Valley (The Netherlands). Mededelingen Rijks Geologische Dienst 44, (1990). 141 205.Google Scholar
Roberts, N., Black, S., Boyer, P., Eastwood, W.J., Griffiths, H.I., Lamb, H.F., Leng, M.J., Parish, R., Reed, M.J., Twigg, D., and Yiğitbaşioğlu, H. Chronology and stratigraphy of the Late Quaternary sediments in the Konya Basin, Turkey; results from the KOPAL Project. Quaternary Science Reviews 18, (1999). 611 630.Google Scholar
Rose, J., and Meng, X. River activity in small catchments over the last 140 ka, Northeast Mallorca, Spain. Brown, A.G., and Quine, T.A. Fluvial Processes and Environmental Change. (1999). Wiley, New York. 91 102.Google Scholar
Rousseau, D.D. Paleoclimatology of the Achenheim series (Middle and Upper Pleistocene, Alsace, France). A malacological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 59, (1987). 293 314.Google Scholar
Rousseau, D.D., Zöller, L., and Valet, J.P. Late Pleistocene climatic variations at Achenheim, France, based on a magnetic susceptibility and TL chronology of loess. Quaternary Research 49, (1998). 255 263.Google Scholar
Rousseau, D.D., Gerasimenko, N., Matvischiina, Z., and Kukla, G. Late Pleistocene environments of the Central Ukraine. Quaternary Research 56, (2001). 349 356.Google Scholar
Rousseau, D.D., Antoine, P., Hatté, C., Lang, A., Zöller, L., Fontugne, M., Ben Othman, D., Luck, J.M., Moine, M., Labonne, M., Bentaleb, I., and Jolly, D. Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the Last Glaciation. Quaternary Science Reviews 21, (2002). 1577 1582.CrossRefGoogle Scholar
Schwan, J. The origin of horizontal alternating bedding in Weichselian aeolian sands in Northwestern Europe. Sedimentary Geology 49, (1986). 73 108.Google Scholar
Sommé, J., Lautridou, J.P., Heim, J., Maucorps, J., Puisségur, J.J., Rousseau, D.D., Thevenin, A., and Van Vliet-Lanoë, B. Le cycle climatique du pléistocéne supérieur dans les loess d’Alsace à Achenheim. Bulletin de l’Association Française pour l’Etude du Quaternaire 24, (1986). 239 247.Google Scholar
Starkel, L. Reflection of the glacial-interglacial cycle in the evolution of the Vistula river Basin, Poland. Terra Nova 6, (1994). 486 494.Google Scholar
Straffin, E.C., Blum, M.D., Colls, A., and Stokes, S. Alluvial stratigraphy of the Loire and Arroux rivers. Quaternaire 10, (1999). 271 282.Google Scholar
Thompson, S.L., and Pollard, D. Greenland and Antarctic mass balances for present and doubled CO2 from the GENESIS version-2 global climate model. Journal of Climate 10, (1997). 871 900.Google Scholar
Van Andel, T.H. Palaeosols, Red Sediments, and the Old Stone Age in Greece. Geoarchaeology 13, (1998). 361 390.3.0.CO;2-0>CrossRefGoogle Scholar
Van Andel, T.H. Climate and landscape of the middle part of the Weichselian glaciation in Europe. the Stage 3 Project. Quaternary Research 57, (2002). 2 8.Google Scholar
Van Andel, T.H., and Tzedakis, P.C. Palaeolithic landscape of Europe and environs, 150,000 - 25,000 years ago. an overview. Quaternary Science Reviews 15, (1996). 481 500.Google Scholar
Vandenberghe, J., Huijzer, B.S., Mücher, H., and Laan, W. Short climatic oscillations in a western European loess sequence (Kesselt, Belgium). Journal of Quaternary Science 13, (1998). 471 485.Google Scholar
Van Huissteden, J. Tundra rivers of the Last Glacial. sedimentation and geomorphological processes during the Middle Pleniglacial in the Dinkel valley (eastern Netherlands). Mededelingen Rijks Geologische Dienst, 44-3, (1990). 3 138.Google Scholar
Van Huissteden, J., Gibbard, P.L., and Briant, R.M. Periglacial fluvial systems in Northwest Europe during Marine Isotope Stages 4 and 3. Quaternary International 79, (2001). 75 88.Google Scholar
Van Huissteden, J., Schwan, J.C.G., and Bateman, M.D. Environmental conditions and paleowind directions at the end of the Weichselian Late Pleniglacial recorded in aeolian sediments and geomorphology (Twente, Eastern Netherlands). Geologie en Mijnbouwl Netherlands Journal of Geosciences 80, (2001). 1 18.Google Scholar
Van Huissteden, J., Vandenberghe, J. and Pollard, D., Palaeotemperature reconstructions of the European permafrost zone during Oxygen Isotope Stage 3 compared with climate model results. Journal of Quaternary Science, submitted.Google Scholar
Velichko, A.A. Loess-palaeosol formation on the Russian Plain. Quaternary International 7/8, (1990). 103 114.Google Scholar
Wallinga, J., Törnqvist, T.E., Busschers, F.S., Weerts, J.T. 2001. How important is eustatic forcing for the Rhine-Meuse system? in: Wallinga, J. (Ed.), The Rhine-Meuse system in a new light: optically stimulated luminescence dating and its application to fluvial deposits, Netherlands Geographical Studies, 290, pp. 141166.Google Scholar
Wintle, A.G. Thermoluminescence dating of loess at Rocourt, Belgium. Geologie en Mijnbouw 66, (1987). 35 42.Google Scholar
Zöller, L., Oches, E.A., and McCoy, W.D. Towards a revised chronology of loess in Austria, with respect to key sections in Czech republic and in Hungary. Quaternary Geochronology. Quaternary Science Reviews 13, (1994). 465 472.Google Scholar