Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T11:13:05.785Z Has data issue: false hasContentIssue false

Millennial-scale Asian monsoon variability during the late Marine Isotope Stage 6 from Hulu Cave, China

Published online by Cambridge University Press:  24 August 2018

Quan Wang
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Yongjin Wang*
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Qingfeng Shao
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Yijia Liang
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Zhenqiu Zhang
Affiliation:
School of History, Geography and Tourism, Shangrao Normal University, Shangrao 334001, China
Xinggong Kong
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
*
*Corresponding author at: College of Geography Science, Nanjing Normal University, Nanjing 210023, China. E-mail address: yjwang@njnu.edu.cn (Y.W.)

Abstract

A precisely 230Th-dated stalagmite δ13C profile from Hulu Cave, China, is presented to characterize the frequency and pattern of millennial-scale Asian monsoon (AM) variability from 160.6 to 132.5 ka. Evidence for an antiphased relationship of the δ13C and δ18O on the millennial scale suggests that the δ13C is indicative of the local hydrological cycle associated with changes in AM strength. Owing to the δ13C responding to AM changes more sensitively than the δ18O, we could identify 15 strong AM events that correlate to cold intervals recorded in Antarctic ice cores within 230Th dating uncertainty. This result supports a dynamic link of AM strength and southern hemispheric climates via the cross-equatorial airflows. Power spectrum analysis shows a predominant periodicity of 1.5–2.5 ka for the δ13C profile, similar to the Dansgaard-Oeschger frequency during the last glacial period. Moreover, the AM events are characterized by rapid transitions at the onset, suggesting that the observed millennial-scale AM variability is likely forced by northern high-latitude climates via north–south shifts of the Intertropical Convergence Zone associated with the bipolar seesaw mechanism. As evidence for a common mechanism for ice age terminations, a strong AM event (~134 ka) surrounding Termination II is analogous to the Bølling-Allerød warming interval.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alley, R.B., Anandakrishnan, S., Jung, P., 2001. Stochastic resonance in the North Atlantic. Paleoceanography 16, 190198.Google Scholar
An, Z., 2000. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, 171187.Google Scholar
Andersen, K.K., Svensson, A., Johnsen, S.J., Rasmussen, S.O., Bigler, M., Röthlisberger, R., Ruth, U., Siggaard-Andersen, M.-L., Peder Steffensen, J., Dahl-Jensen, D., Vinther, B.M., Clausen, H.B., 2006. The Greenland Ice Core Chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quaternary Science Reviews 25, 32463257.Google Scholar
Baker, A., Ito, E., Smart, P.L., McEwan, R.F., 1997. Elevated and variable values of 13C in speleothems in a British cave system. Chemical Geology 136, 263270.Google Scholar
Barker, S., Knorr, G., Edwards, R.L., Parrenin, F., Putnam, A.E., Skinner, L.C., Wolff, E., Ziegler, M., 2011. 800,000 Years of abrupt climate variability. Science 334, 347351.Google Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., 2000. Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean, as evident from speleothems, Soreq cave, Israel. Chemical Geology 169, 145156.Google Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., Wasserburg, G.J., 1999. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth and Planetary Science Letters 166, 8595.Google Scholar
Bazin, L., Landais, A., Lemieux-Dudon, B., Kele, H.T.M., Veres, D., Parrenin, F., Martinerie, P., et al., 2013. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Climate of the Past 9, 17151731.Google Scholar
Blunier, T., Brook, E.J., 2001. Timing of Millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109112.Google Scholar
Braun, H., Christl, M., Rahmstorf, S., Ganopolski, A., Mangini, A., Kubatzki, C., Roth, K., Kromer, B., 2005. Possible solar origin of the 1,470-year glacial climate cycle demonstrated in a coupled model. Nature 438, 208211.Google Scholar
Broecker, W.S., Denton, G.H., Edwards, R.L., Cheng, H., Alley, R.B., Putnam, A.E., 2010. Putting the Younger Dryas cold event into context. Quaternary Science Reviews 29, 10781081.Google Scholar
Burns, S.J., Fleitmann, D., Matter, A., Kramers, J., Al-Subbary, A.A., 2003. Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science 301, 13651367.Google Scholar
Caballero, E., Jiménez De Cisneros, C., Reyes, E., 1996. A stable isotope study of cave seepage waters. Applied Geochemistry 11, 583587.Google Scholar
Cai, Y., Fung, I.Y., Edwards, R.L., An, Z., Cheng, H., Lee, J.-E., Tan, L., et al., 2015. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proceedings of the National Academy of Sciences USA 112, 29542959.Google Scholar
Calvo, E., Pelejero, C., De Deckker, P., Logan, G.A., 2007. Antarctic deglacial pattern in a 30 kyr record of sea surface temperature offshore South Australia. Geophysical Research Letters 34, L13707.Google Scholar
Chen, S., Wang, Y., Cheng, H., Edwards, R.L., Wang, X., Kong, X., Liu, D., 2016. Strong coupling of Asian monsoon and Antarctic climates on sub-orbital timescales. Scientific Reports 6, 32995.Google Scholar
Cheng, H., Edwards, R.L., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R., Wang, X., 2009. Ice age terminations. Science 326, 248252.Google Scholar
Cheng, H., Edwards, R.L., Sinha, A., Spotl, C., Yi, L., Chen, S., Kelly, M., et al., 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640646.Google Scholar
Cheng, H., Edwards, R.L., Wang, Y., Kong, X., Ming, Y., Kelly, M.J., Wang, X., Gallup, C.D., Liu, W., 2006. A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations. Geology 34, 217220.Google Scholar
Chiang, J.C.H., Bitz, C.M., 2005. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dynamics 25, 477496.Google Scholar
Cimatoribus, A.A., Drijfhout, S.S., Livina, V., Gerard, V.D.S., 2013. Dansgaard-Oeschger events: bifurcation points in the climate system. Climate of the Past 8, 323333.Google Scholar
Clemens, S.C., Prell, W.L., Sun, Y., 2010. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: reinterpreting cave speleothem δ18O. Paleoceanography 25, PA4207PA4226.Google Scholar
Cortese, G., Abelmann, A., 2002. Radiolarian-based paleotemperatures during the last 160 kyr at ODP Site 1089 (Southern Ocean, Atlantic Sector). Palaeogeography, Palaeoclimatology, Palaeoecology 182, 259286.Google Scholar
Cruz, F.W., Karmann, I., Viana, O. Jr, Burns, S.J., Ferrari, J.A., Vuille, M., Sial, A.N., Moreira, M.Z., 2005. Stable isotope study of cave percolation waters in subtropical Brazil: implications for paleoclimate inferences from speleothems. Chemical Geology 220, 245262.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., et al., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.Google Scholar
Dayem, K.E., Molnar, P., Battisti, D.S., Roe, G.H., 2010. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia. Earth and Planetary Science Letters 295, 219230.Google Scholar
Deaney, E.L., Barker, S., van de Flierdt, T., 2017. Timing and nature of AMOC recovery across Termination 2 and magnitude of deglacial CO2 change. Nature Communications 8, 14595.Google Scholar
Deininger, M., Fohlmeister, J., Scholz, D., Mangini, A., 2012. Isotope disequilibrium effects: the influence of evaporation and ventilation effects on the carbon and oxygen isotope composition of speleothems —a model approach. Geochimica et Cosmochimica Acta 96, 5779.Google Scholar
Dorale, J.A., Edwards, R.L., Ito, E., González, L.A., 1998. Climate and vegetation history of the midcontinent from 75 to 25 ka: a speleothem record from Crevice Cave, Missouri, USA. Science 282, 18711874.Google Scholar
Dorale, J.A., Gonzalez, L.A., Reagan, M.K., Pickett, D.A., Murrell, M.T., Baker, R.G., 1992. A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave. Science 258, 16261630.Google Scholar
Dorale, J.A., Liu, Z.H., 2009. Limitations of Hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. Journal of Cave and Karst Studies 71, 7380.Google Scholar
Dreybrodt, W., Deininger, M., 2014. The impact of evaporation to the isotope composition of DIC in calcite precipitating water films in equilibrium and kinetic fractionation models. Geochimica et Cosmochimica Acta 125, 433439.Google Scholar
Duan, F., Liu, D., Cheng, H.A.I., Wang, X., Wang, Y., Kong, X., Chen, S., 2014. A high-resolution monsoon record of millennial-scale oscillations during Late MIS 3 from Wulu Cave, south-west China. Journal of Quaternary Science 29, 8390.Google Scholar
Duan, F., Wu, J., Wang, Y., Edwards, R.L., Cheng, H., Kong, X., Zhang, W., 2015. A 3000-yr annually laminated stalagmite record of the Last Glacial Maximum from Hulu Cave, China. Quaternary Research 83, 360369.Google Scholar
Duan, W., Cheng, H., Tan, M., Edwards, R.L., 2016a. Onset and duration of transitions into Greenland Interstadials 15.2 and 14 in northern China constrained by an annually laminated stalagmite. Scientific Reports 6, 20844.Google Scholar
Duan, W., Ruan, J., Luo, W., Li, T., Tian, L., Zeng, G., Zhang, D., et al., 2016b. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China. Geochimica et Cosmochimica Acta 183, 250266.Google Scholar
EPICA Community Members. 2004. Eight glacial cycles from an Antarctic ice core. Nature 429, 623628.Google Scholar
EPICA Community Members. 2006. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195198.Google Scholar
Frappier, A., Sahagian, D., González, L.A., Carpenter, S.J., 2002. El Niño events recorded by stalagmite carbon isotopes. Science 298, 565565.Google Scholar
Ganopolski, A., Rahmstorf, S., 2001. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153158.Google Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., Van-Exter, S., 2003. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, 833837.Google Scholar
Grootes, P.M., Stuiver, M., 1997. Oxygen 18/16 variability in Greenland snow and ice with 10−3- to 105-year time resolution. Journal of Geophysical Research: Oceans 102, 2645526470.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., Jouzel, J., 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554.Google Scholar
Hercman, H., Pawlak, J., 2012. MOD-AGE: an age-depth model construction algorithm. Quaternary Geochronology 12, 110.Google Scholar
Jacobel, A.W., McManus, J.F., Anderson, R.F., Winckler, G., 2016. Large deglacial shifts of the Pacific Intertropical Convergence Zone. Nature Communications 7, 10449.Google Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., et al., 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793796.Google Scholar
Kathayat, G., Cheng, H., Sinha, A., Spötl, C., Edwards, R.L., Zhang, H., Li, X., et al., 2016. Indian monsoon variability on millennial-orbital timescales. Scientific Reports 6, 24374.Google Scholar
Kelly, M.J., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., An, Z., 2006. High resolution characterization of the Asian monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination II. Palaeogeography, Palaeoclimatology, Palaeoecology 236, 2038.Google Scholar
Knutti, R., Fluckiger, J., Stocker, T.F., Timmermann, A., 2004. Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature 430, 851856.Google Scholar
Koltai, G., Spötl, C., Shen, C.C., Wu, C.C., Rao, Z., Palcsu, L., Kele, S., Surányi, G., Bárány-Kevei, I., 2017. A penultimate glacial climate record from southern Hungary. Journal of Quaternary Science 32, 946956.Google Scholar
Kong, X., Wang, Y., Wu, J., Cheng, H., Edwards, R.L., Wang, X., 2005. Complicated responses of stalagmite δ13C to climate change during the last glaciation from Hulu Cave, Nanjing, China. Science China Earth Science 48, 21742181.Google Scholar
Landais, A., Masson-Delmotte, V., Stenni, B., Selmo, E., Roche, D.M., Jouzel, J., Lambert, F., et al., 2015. A review of the bipolar see-saw from synchronized and high resolution ice core water stable isotope records from Greenland and East Antarctica. Quaternary Science Reviews 114, 1832.Google Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428, 261285.Google Scholar
Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S., Schellnhuber, H.J., 2008. Inaugural article: tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences USA 105, 17861793.Google Scholar
Levermann, A., Schewe, J., Petoukhov, V., Held, H., 2009. Basic mechanism for abrupt monsoon transitions. Proceedings of the National Academy of Sciences USA 106, 2057220577.Google Scholar
Li, C., Battisti, D.S., Schrag, D.P., Tziperman, E., 2005. Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophysical Research Letters 32, L19702.Google Scholar
Li, T., Shen, C., Huang, L., Jiang, X., Yang, X., Mii, H., Lee, S., Lo, L., 2014. Stalagmite-inferred variability of the Asian summer monsoon during the penultimate glacial-interglacial period. Climate of the Past 10, 12111219.Google Scholar
Li, Y., Su, N., Liang, L., Ma, L., Yan, Y., Sun, Y., 2015. Multiscale monsoon variability during the last two climatic cycles revealed by spectral signals in Chinese loess and speleothem records. Climate of the Past 11, 10671075.Google Scholar
Lisiecki, L.E., Stern, J.V., 2016. Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanography, 13681394.Google Scholar
Liu, Z., Wen, X., Brady, E.C., Otto-Bliesner, B., Yu, G., Lu, H., Cheng, H., et al., 2014. Chinese cave records and the East Asia Summer Monsoon. Quaternary Science Reviews 83, 115128.Google Scholar
Lohmann, J., Ditlevsen, P.D., 2018. Random and externally controlled occurrences of Dansgaard–Oeschger events. Climate of the Past 14, 609617.Google Scholar
Lynch-Stieglitz, J., 2017. The Atlantic meridional overturning circulation and abrupt climate change. Annual Review of Marine Science 9, 83104.Google Scholar
Maher, B.A., 2008. Holocene variability of the East Asian summer monsoon from Chinese cave records: a re-assessment. The Holocene 18, 861866.Google Scholar
Maher, B.A., Thompson, R., 2012. Oxygen isotopes from Chinese caves: records not of monsoon rainfall but of circulation regime. Journal of Quaternary Science 27, 615624.Google Scholar
Marino, G., Rohling, E.J., Rodriguez-Sanz, L., Grant, K.M., Heslop, D., Roberts, A.P., Stanford, J.D., Yu, J., 2015. Bipolar seesaw control on last interglacial sea level. Nature 522, 197201.Google Scholar
Marino, G., Zahn, R., Ziegler, M., Purcell, C., Knorr, G., Hall, I.R., Ziveri, P., Elderfield, H., 2013. Agulhas salt-leakage oscillations during abrupt climate changes of the Late Pleistocene. Paleoceanography 28, 599606.Google Scholar
Martrat, B., Jimenez-Amat, P., Zahn, R., Grimalt, J.O., 2014. Similarities and dissimilarities between the last two deglaciations and interglaciations in the North Atlantic region. Quaternary Science Reviews 99, 122134.Google Scholar
Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S., Yang, Q., Lyons, W.B., Prentice, M., 1997. Major features and forcing of high-latitude Northern Hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. Journal of Geophysical Research: Oceans 102, 2634526366.Google Scholar
Meyer, K.W., Feng, W., Breecker, D.O., Banner, J.L., Guilfoyle, A., 2014. Interpretation of speleothem calcite δ13C variations: evidence from monitoring soil CO2, drip water, and modern speleothem calcite in central Texas. Geochimica et Cosmochimica Acta 142, 281298.Google Scholar
Pape, J.R., Banner, J.L., Mack, L.E., Musgrove, M., Guilfoyle, A., 2010. Controls on oxygen isotope variability in precipitation and cave drip waters, central Texas, USA. Journal of Hydrology 385, 203215.Google Scholar
Pausata, F.S.R., Battisti, D.S., Nisancioglu, K.H., Bitz, C.M., 2011. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nature Geoscience 4, 474480.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., et al., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.Google Scholar
Plagnes, V., Causse, C., Genty, D., Paterne, M., Blamart, D., 2002. A discontinuous climatic record from 187 to 74 ka from a speleothem of the Clamouse Cave (south of France). Earth and Planetary Science Letters 201, 87103.Google Scholar
Rohling, E.J., Hibbert, F.D., Williams, F.H., Grant, K.M., Marino, G., Foster, G.L., Hennekam, R., et al., 2017. Differences between the last two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions. Quaternary Science Reviews 176, 128.Google Scholar
Rohling, E.J., Liu, Q.S., Roberts, A.P., Stanford, J.D., Rasmussen, S.O., Langen, P.L., Siddall, M., 2009. Controls on the East Asian monsoon during the last glacial cycle, based on comparison between Hulu Cave and polar ice-core records. Quaternary Science Reviews 28, 32913302.Google Scholar
Schewe, J., Levermann, A., Cheng, H., 2015. A critical humidity threshold for monsoon transitions. Climate of the Past 8, 535544.Google Scholar
Schmittner, A., Yoshimori, M., Weaver, A.J., 2002. Instability of glacial climate in a model of the ocean-atmosphere-cryosphere system. Science 295, 14891493.Google Scholar
Scussolini, P., Marino, G., Brummer, G.J.A., Peeters, F.J.C., 2015. Saline Indian Ocean waters invaded the South Atlantic thermocline during glacial termination II. Geology 43, 478479.Google Scholar
Shao, Q.-F., Pons-Branchu, E., Zhu, Q.-P., Wang, W., Valladas, H., Fontugne, M., 2017. High precision U/Th dating of the rock paintings at Mt. Huashan, Guangxi, southern China. Quaternary Research 88, 113.Google Scholar
Spötl, C., Fairchild, I.J., Tooth, A.F., 2005. Cave air control on dripwater geochemistry, Obir Caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochimica et Cosmochimica Acta 69, 24512468.Google Scholar
Stocker, T.F., Johnsen, S.J., 2003. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, 1087.Google Scholar
Tan, M., 2014. Circulation effect: response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Climate Dynamics 42, 10671077.Google Scholar
Veres, D., Bazin, L., Landais, A., Kele, H.T.M., 2013. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Climate of the Past 9, 17331748.Google Scholar
WAIS Divide Project Members. 2015. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520, 661665.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C., Dorale, J.A., 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 23452348.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., Kong, X.G., Shao, X.H., Chen, S.T., Wu, J.Y., Jiang, X.Y., Wang, X.F., An, Z.S., 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 10901093.Google Scholar
Webster, P.J., Magaña, V.O., Palmer, T.N., Shukla, J., Tomas, R.A., Yanai, M., Yasunari, T., 1998. Monsoons: processes, predictability, and the prospects for prediction. Journal of Geophysical Research Oceans 103, 1445114510.Google Scholar
Wolff, E.W., Chappellaz, J., Blunier, T., Rasmussen, S.O., Svensson, A., 2010. Millennial-scale variability during the last glacial: the ice core record. Quaternary Science Reviews 29, 28282838.Google Scholar
Wu, J., Wang, Y., Cheng, H., Edwards, L.R., 2009. An exceptionally strengthened East Asian summer monsoon event between 19.9 and 17.1 ka BP recorded in a Hulu stalagmite. Science China Earth Science 52, 360368.Google Scholar
Zhang, R., Delworth, T.L., 2005. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate 18, 18531860.Google Scholar