Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T12:17:03.876Z Has data issue: false hasContentIssue false

Middle to Late Holocene lake evolution and its links with westerlies and Asian monsoon in the middle part of the Hexi Corridor, NW China

Published online by Cambridge University Press:  19 July 2023

Simin Peng
Affiliation:
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Observation and Research Station on Eco-Environment of Frozen Ground in the Qilian Mountains, Lanzhou University, Lanzhou, 730000, China.
Yu Li*
Affiliation:
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Observation and Research Station on Eco-Environment of Frozen Ground in the Qilian Mountains, Lanzhou University, Lanzhou, 730000, China.
Xueru Zhou
Affiliation:
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Observation and Research Station on Eco-Environment of Frozen Ground in the Qilian Mountains, Lanzhou University, Lanzhou, 730000, China.
Lu Hao
Affiliation:
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Observation and Research Station on Eco-Environment of Frozen Ground in the Qilian Mountains, Lanzhou University, Lanzhou, 730000, China.
Hebin Liu
Affiliation:
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Observation and Research Station on Eco-Environment of Frozen Ground in the Qilian Mountains, Lanzhou University, Lanzhou, 730000, China.
Zhansen Zhang
Affiliation:
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Observation and Research Station on Eco-Environment of Frozen Ground in the Qilian Mountains, Lanzhou University, Lanzhou, 730000, China.
Haiye Li
Affiliation:
Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Observation and Research Station on Eco-Environment of Frozen Ground in the Qilian Mountains, Lanzhou University, Lanzhou, 730000, China.
*
Corresponding author: Yu Li; Email: liyu@lzu.edu.cn

Abstract

The interpretation and understanding of the relationship between Middle to Late Holocene climate change in monsoon margins of northwest China with the westerlies and Asian monsoon (AM) remain controversial. Here we present a new multi-proxy sedimentary dataset from the Heihe River basin in the middle part of the Hexi Corridor on the northern margin of the Qinghai-Tibet Plateau (QTP), which is a sensitive zone for the interaction between the westerlies and AM. Fluctuations in grain size, δ13Corg, δ18O, magnetic susceptibility, total organic carbon, total nitrogen, and C/N ratio document regional lake and climate evolution since 5334 cal yr BP. Results show that climate conditions on the millennial timescale are humid in the late Middle Holocene (MH) and dry to wet in the Late Holocene (LH). Combined with the multi-model ensemble simulation from PMIP3-CMIP5, high lake levels and wetter climate in the late MH are closely linked to the strengthening Asian summer monsoon. Simultaneously, the slight wetting trend since the late LH may be the superimposing effect of enhanced westerlies and the weakening Asian winter monsoon. These findings can provide insights into the interpretation of the interaction between the westerlies and AM during the Holocene in East Asia.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

An, C., Feng, Z., Barton, L., 2006. Dry or humid? Mid-Holocene humidity changes in arid and semi-arid China. Quaternary Science Reviews 25, 351361.CrossRefGoogle Scholar
An, C., Zhao, J., Tao, S., Lv, Y., Dong, W., Li, H., Jin, M., Wang, Z., 2011. Dust variation recorded by lacustrine sediments from arid Central Asia since ~15 cal ka BP and its implication for atmospheric circulation. Quaternary Research 75, 566573.CrossRefGoogle Scholar
An, Z., Colman, S.M., Zhou, W., Li, X., Brown, E.T., Jull, A.T., Cai, Y., et al., 2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Scientific Reports 2, 619. https://doi.org/10.1038/srep00619.CrossRefGoogle ScholarPubMed
An, Z., Porter, S.C., Kutzbach, J.E., Wu, X., Wang, S., Liu, X., Li, X., Zhou, W., 2000. Asynchronous Holocene optimum of the East Asian monsoon. Quaternary Science Reviews 19, 743762.CrossRefGoogle Scholar
Aravena, R., Warner, B.G., MacDonald, G.M., Hanf, K.I., 1992. Carbon isotope composition of lake sediments in relation to lake productivity and radiocarbon dating. Quaternary Research 37, 333345.CrossRefGoogle Scholar
Berger, A., Loutre, M.F., 1991. Isolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Berner, R.A., 1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Research 51, 359369.Google Scholar
Bowen, R., 1991. Isotopes and Climates. Elsevier Applied Science, London.Google Scholar
Briegleb, B.P., Bitz, C.M., Hunke, E.C., Lioscomb, W.H., Holland, M.M., Schramm, J.L., Moritz, A.R., 2004. Scientific description of the sea ice component in the community climate system model, version 3. NCAR Technical Report 463. University Corporation for Atmospheric Research. http://dx.doi.org/10.5065/D6HH6H1P.Google Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Bronk Ramsey, C., Lee, S., 2013. Recent and planned developments of the program OxCal. Radiocarbon 55, 720730.CrossRefGoogle Scholar
Chen, F., Chen, J., Holmes, J., Boomer, I., Austin, P., Gates, J.B., Wang, N., Brooks, S., Zhang, J., 2010. Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region. Quaternary Science Reviews 29, 10551068.CrossRefGoogle Scholar
Chen, F., Chen, J., Huang, W., Chen, S., Huang, X., Jin, L., Jia, J., et al., 2019. Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Science Reviews 192, 337354.CrossRefGoogle Scholar
Chen, F., Jia, J., Chen, J., Li, G., Zhang, X., Xie, H., Xia, D., Huang, W., An, C., 2016b. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China. Quaternary Science Reviews 146, 134146CrossRefGoogle Scholar
Chen, F., Wu, D., Chen, J., Zhou, A., Yu, J., Shen, J., Wang, S., Huang, X., 2016a. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: a review of conflicting proxies. Quaternary Science Reviews 154, 111129.CrossRefGoogle Scholar
Chen, F., Xu, Q., Chen, J., Birks, H.J.B., Liu, J., Zhang, S., Jin, L., et al., 2015. East Asian summer monsoon precipitation variability since the last deglaciation. Scientific Reports 5, 11186. https://doi.org/10.1038/srep11186.CrossRefGoogle ScholarPubMed
Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D.B., Huang, X., et al., 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews 27, 351364.CrossRefGoogle Scholar
Chen, J., An, Z.S., Head, J., 1999. Variation of Rb/Sr ratio in the loess-paleosol sequences of Central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quaternary Research 51, 215219.CrossRefGoogle Scholar
Cheng, B., Chen, F., Zhang, J., 2013. Palaeovegetational and palaeoenvironmental changes since the last deglacial in Gonghe Basin, northeast Tibetan Plateau. Journal of Geographical Sciences 23, 136146.CrossRefGoogle Scholar
Chiang, J.C., Fung, I.Y., Wu, C. H., Cai, Y.J., Edman, J.P., Liu, Y.M., 2015. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quaternary Science Reviews 108, 111129.CrossRefGoogle Scholar
Cosford, J., Qing, H., Eglington, B., Mattey, D., Yuan, D., Zhang, M., Cheng, H., 2008. East Asian monsoon variability since the mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China. Earth and Planetary Science Letters 275, 296307.CrossRefGoogle Scholar
Dodson, J., Li, X., Ji, M., Zhao, K., Zhou, X., Levchenko, V., 2009. Early bronze in two Holocene archaeological sites in Gansu, NW China. Quaternary Research 72, 309314.CrossRefGoogle Scholar
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., et al., 2013. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dynamics 40, 21232165.CrossRefGoogle Scholar
Fan, Q., Ma, H., Wei, H., An, F., 2014. Holocene lake-level changes of Hurleg Lake on northeastern Qinghai-Tibetan Plateau and possible forcing mechanism. The Holocene 24, 274283.CrossRefGoogle Scholar
Farquhar, G.D., Ehleringer, J.R., Hubrick, K.T., 1989. Carbon isotopic discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40, 503537.CrossRefGoogle Scholar
Feng, J., Sun, H., He, M., Gao, Z., Liu, J., Wu, X., An, Y., 2020. Quality assessments of shallow groundwaters for drinking and irrigation purposes: insights from a case study (Jinta basin, Heihe drainage area, northwest China). Water 12, 2704. https://doi.org/10.3390/w12102704.CrossRefGoogle Scholar
Feng, Y., Yang, X., 2019. Moisture sources of the Alashan Sand Seas in western Inner Mongolia, China during the Last Glacial Maximum and mid-Holocene. Journal of Geographical Sciences 29, 21012121.CrossRefGoogle Scholar
Gao, K., Jiang, X., He, Y., Hu, H. M., Shen, C. C., Zhang, X., 2023. Strong link between Asian summer monsoon and westerlies for the past 4750 years. Palaeogeography, Palaeoclimatology, Palaeoecology 609, 111329. https://doi.org/10.1016/j.palaeo.2022.111329.CrossRefGoogle Scholar
Gent, P.R., Danabasoglu, G., Donner, L.J., Holland, M.M., Hunke, E.C., Jayne, S.R., Lawrence, D.M., Neale, R.B., Rasch, P.J., Vertenstein, M., 2011. The community climate system model version 4. Journal of Climate 24, 49734991.CrossRefGoogle Scholar
Gou, X., Deng, Y., Gao, L., Chen, F., Cook, E., Yang, M., Zhang, F., 2015. Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China. Climate Dynamics 45, 17611770.CrossRefGoogle Scholar
Greig, A., David, H., 2015. New methods for unmixing sediment grain size data. Geochemistry, Geophysics, Geosystems 16, 44944506.Google Scholar
Hartmann, K., Wünnemann, B., 2009. Hydrological changes and Holocene climate variations in NW China, inferred from lake sediments of Juyanze palaeolake by factor analyses. Quaternary International 194, 2844.CrossRefGoogle Scholar
Herzschuh, U., Borkowski, J., Schewe, J., Mischke, S., Tian, F., 2014. Moisture advection feedback supports strong early-to-mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 402, 4454.CrossRefGoogle Scholar
Herzschuh, U., Cao, X., Laepple, T., Dallmeyer, A., Telford, R.J., Ni, J., Chen, F., et al., 2019. Position and orientation of the westerly jet determined Holocene rainfall patterns in China. Nature Communications 10, 2376. https://doi.org/10.1038/s41467-019-09866-8.CrossRefGoogle ScholarPubMed
Herzschuh, U., Tarasov, P., Wunnemann, B., Hartmann, K., 2004. Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology 211, 117.CrossRefGoogle Scholar
Hofmann, J., Geyh, M.A., 1998. Untersuchungen zum 14C-Reservoir Effekt an rezenten und fossilen lakustrinen Sedimenten aus dem Südosten der Badain Jaran Wüste (Innere Mongolei/VR China). Berliner Geographische Abhandlungen 63, 8398.Google Scholar
Horton, T.W., Defliese, W.F., Tripati, A.K., Oze, C., 2016. Evaporation induced 18O and 13C enrichment in lake systems: a global perspective on hydrologic balance effects. Quaternary Science Reviews 131, 365379.CrossRefGoogle Scholar
Hu, J., Sha, Z., Ma, Y., Kong, F., Wang, Q., 2017. Characteristics of grain size and their environmental significance of sediment at the Buha estuary of Qinghai Lake. Arid Zone Research 34, 445451. [in Chinese]Google Scholar
Ji, Y., Xia, Z., 2007. Comparison and Primarily Interpretation of Magnetic Susceptibilities in Different Sediments. Acta Geoscientica Sinica 28, 541549. [in Chinese]Google Scholar
Jin, L., Chen, F., Morrill, C., Otto-Bliesner, B., Rosenbloom, N., 2012. Causes of Early Holocene desertification in arid central Asia. Climate Dynamics 38, 15771591.CrossRefGoogle Scholar
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., et al., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77, 437472.2.0.CO;2>CrossRefGoogle Scholar
Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Sommer, P., Heiri, O., Davis, B., 2020. Holocene global surface temperature: a multi-method reconstruction approach. Scientific Data 7, 201. https://doi.org/10.1038/s41597-020-0530-7.CrossRefGoogle ScholarPubMed
Kohn, M.J., 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo)climate. Proceedings of the National Academy of Sciences 107, 1969119695.CrossRefGoogle ScholarPubMed
Kong, W., Swenson, L., Chiang, J., 2017. Seasonal transitions and the westerly jet in the Holocene East Asian summer monsoon. Journal of Climate 108, 11129.Google Scholar
Kranck, K., Smith, P.C., Milligan, T.G., 1996. Grain-size characteristics of fine-grained unflocculated sediments I: ‘one-round’ distributions. Sedimentology 43, 589594.CrossRefGoogle Scholar
Lan, J., Wang, T., Dong, J., Kang, S., Cheng, P., Zhou, K., Liu, X., Wang, Y., Ma, L., 2021. The influence of ice sheet and solar insolation on Holocene moisture evolution in northern Central Asia. Earth-Science Reviews 217, 103645. https://doi.org/10.1016/j.earscirev.2021.103645.CrossRefGoogle Scholar
Lan, J., Xu, H., Liu, B., Sheng, E., Zhao, J., Yu, K., 2013. Paleoclimate implications of carbonate, organic matter, and their stable isotopes in lacustrine sediments: a review. Chinese Journal of Ecology 32, 13261334. [in Chinese]Google Scholar
Li, B., 1998. An investigation and study on the desertification of the ancient oases from Han to Tang dynasties in the Heixi Corridor. Acta Geographica Sinica 53, 106115. [in Chinese]Google Scholar
Li, G., Wang, X., Zhang, X., Yan, Z., Liu, Y., Yang, H., Wang, Y., et al., 2022. Westerlies-Monsoon interaction drives out-of-phase precipitation and asynchronous lake level changes between Central and East Asia over the last millennium. Catena 218, 106568. https://doi.org/10.1016/j.catena.2022.106568.CrossRefGoogle Scholar
Li, L., Lin, P., Yu, Y., Wang, B., Zhou, T., Liu, L., Liu, J., et al., 2013. The flexible global ocean-atmosphere-land system model, Grid-point version 2: FGOALS-g2. Advances in Atmospheric Sciences 30, 543560.CrossRefGoogle Scholar
Li, X., Ji, M., Dodson, J., Zhou, X., Zhao, K., Sun, N., Yang, Q., 2010. Records of element geochemistry on the bronze smelting in Hexi Corridor since 4200 aBP. Journal of Lake Sciences 22, 103109. [in Chinese]Google Scholar
Li, X., Liu, H., Zhao, K., Ji, M., Zhou, X., 2013. Holocene climate and environmental changes reconstructed from elemental geochemistry in the western Hexi Corridor. Acta Anthropologica Sinica 32, 110120. [in Chinese]Google Scholar
Li, X., Sun, N., Dodson, J., Ji, M., Zhao, K., Zhou, X., 2011. The impact of early smelting on the environment of Huoshiliang in Hexi Corridor, NW China, as recorded by fossil charcoal and chemical elements. Palaeogeography, Palaeoclimatology, Palaeoecology 305, 329336.CrossRefGoogle Scholar
Li, Y., Han, L., Liu, X., Song, Y., Wang, Y., 2021. Correlation and anti-correlation of the Asian summer monsoon and westerlies during the Holocene. Gondwana Research 91, 112120.CrossRefGoogle Scholar
Li, Y., Peng, S., Hao, L., Zhou, X., Li, H., 2022. Interactions of the westerlies and Asian summer monsoon since the last deglaciation in the northeastern Qinghai-Tibet Plateau. Paleoceanography and Paleoclimatology 37, e2022PA004548. https://doi.org/10.1029/2022PA004548.CrossRefGoogle Scholar
Li, Y., Peng, S., Liu, H., Zhang, X., Ye, W., Han, Q., Zhang, Y., Xu, L., Li, Y.C., 2020. Westerly jet stream controlled climate change mode since the Last Glacial Maximum in the northern Qinghai-Tibet Plateau. Earth and Planetary Science Letters 549, 116529. https://doi.org/10.1016/j.epsl.2020.116529.CrossRefGoogle Scholar
Li, Y., Wang, N., Chen, H., Li, Z., Zhou, X., Zhang, C., 2012. Tracking millennial-scale climate change by analysis of the modern summer precipitation in the marginal regions of the Asian monsoon. Journal of Asian Earth Sciences 58, 7887.CrossRefGoogle Scholar
Li, Y., Wang, N., Li, Z., Cheng, H., 2011. The relationship among organic geochemical proxies and their palaeoenvironmental significances in the Zhuye Lake sediments. Journal of Glaciology and Geocryology 33, 334341. [in Chinese]Google Scholar
Li, Y., Wang, N., Li, Z., Zhou, X., Zhang, C., 2013. Climatic and environmental change in Yanchi Lake northwest China since the Late Glacial: a comprehensive analysis of lake sediments. Journal of Geographical Sciences 23, 932946.CrossRefGoogle Scholar
Lister, G.S., Kelts, K., Zao, C., Yu, J., Niessen, F., 1991. Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for Ostracoda since the latest Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 84, 141162.CrossRefGoogle Scholar
Liu, C., Zhang, J., Jiao, P., Mischke, S., 2016. The Holocene history of Lop Nur and its palaeoclimate implications. Quaternary Science Reviews 148, 163175.CrossRefGoogle Scholar
Liu, K., Yao, Z., Thompson, L.G., 1998. A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai-Tibetan Plateau. Geology 26, 135138.2.3.CO;2>CrossRefGoogle Scholar
Liu, W., Li, X., An, Z., Xu, L., Zhang, Q., 2013. Total organic carbon isotopes: a novel proxy of lake level from Lake Qinghai in the Qinghai-Tibet Plateau, China. Chemical Geology 347, 153160.CrossRefGoogle Scholar
Liu, X., Dong, H., Yang, X., Herzschuh, U., Zhang, E., Stuut, J.-B.W., Wang, Y., 2009. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau. Earth and Planetary Science Letters 280, 276284.CrossRefGoogle Scholar
Liu, X., Herzschuh, U., Shen, J., Jiang, Q., Xiao, X., 2008. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quaternary Research 70, 412425.CrossRefGoogle Scholar
Liu, X., Lai, Z., Yu, L., Sun, Y., Madsen, D., 2012. Luminescence chronology of aeolian deposits from the Qinghai Lake area in the northeastern Qinghai-Tibetan Plateau and its palaeoenvironmental implications. Quaternary Geochronology 10, 3743.CrossRefGoogle Scholar
Liu, X., Shen, J., Wang, S., Wang, Y., Liu, W., 2007. Southwest monsoon changes indicated by oxygen isotope of ostracode shells from sediments in Lake Qinghai since the late Glacial. Chinese Science Bulletin 52, 539544.CrossRefGoogle Scholar
Liu, X., Vandenberghe, J., An, Z., Li, Y., Jin, Z., Dong, J., Sun, Y., 2016. Grain size of Lake Qinghai sediments: implications for riverine input and Holocene monsoon variability. Palaeogeography, Palaeoclimatology, Palaeoecology 449, 4151.CrossRefGoogle Scholar
Long, H., Lai, Z., Wang, N., Zhang, J., 2011. A combined luminescence and radiocarbon dating study of Holocene lacustrine sediments from arid northern China. Quaternary Geochronology 6, 19.CrossRefGoogle Scholar
Lu, H., Zhao, C., Mason, J., Yi, S., Zhao, H., Zhou, Y., Ji, J., Swinehart, J., Wang, C., 2011. Holocene climatic changes revealed by aeolian deposits from the Qinghai Lake area (northeastern Qinghai-Tibetan Plateau) and possible forcing mechanisms. The Holocene 21, 297304.Google Scholar
Meyer, I., Davies, G.R., Vogt, C., Kuhlmann, H., Stuut, J.-B.W., 2013. Changing rainfall patterns in NW Africa since the Younger Dryas. Aeolian Research 10, 111123.CrossRefGoogle Scholar
Meyers, P.A., Lallier-Vergès, E., 1999. Lacustrine sedimentary organic matter records of late Quaternary paleoclimates. Journal of Paleolimnology 21, 345372.CrossRefGoogle Scholar
Nagashima, K., Tada, R., Matsui, H., Irino, T., Tani, A., Toyoda, S., 2007. Orbital- and millennial-scale variations in Asian dust transport path to the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 247, 144161.CrossRefGoogle Scholar
Nagashima, K., Tada, R., Tani, A., Sun, Y., Isozaki, Y., Toyoda, S., Hasegawa, H., 2011. Millennial-scale oscillations of the westerly jet path during the last glacial period. Journal of Asian Earth Sciences 40, 12141220.CrossRefGoogle Scholar
Nagashima, K., Tada, R., Toyoda, S., 2013. Westerly jet-East Asian summer monsoon connection during the Holocene. Geochemistry, Geophysics, Geosystems 14, 50415053.CrossRefGoogle Scholar
Peng, S., Li, Y., Liu, H., Han, Q., Zhang, X., Feng, Z., Chen, D., Ye, W., Zhang, Y., 2022. Formation and evolution of mountainous aeolian sediments in the northern Tibet Plateau and their links to the Asian winter monsoon and westerlies since the last glacial maximum. Progress in Physical Geography: Earth and Environment 46, 4360.CrossRefGoogle Scholar
Peng, Y.J., Xiao, J.L., Nakamura, T., Liu, B.L., Inouchi, Y., 2005. Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in inner Mongolia of north-central China. Earth and Planetary Science Letters 233, 467479.CrossRefGoogle Scholar
Prins, M.A., Bouwer, L.M., Beets, C.J., Troelstra, S.R., Weltje, G.J., Kruk, R.W., Kuijpers, A., Vroon, P.Z., 2002. Ocean circulation and iceberg discharge in the glacial North Atlantic: inferences from unmixing of sediment size distributions. Geology 30, 555558.2.0.CO;2>CrossRefGoogle Scholar
Qiang, M., Chen, F., Zhang, J., Gao, S., Zhou, A., 2005. Climate change recorded by stable isotope of carbonate sediments in Sugan Lake since 2 kaBP. Chinese Science Bulletin 50, 19301939. [in Chinese with English abstract]CrossRefGoogle Scholar
Qiang, M., Song, L., Chen, F., Li, M., Liu, X., Wang, Q., 2013. A 16-ka lake-level record inferred from macrofossils in a sediment core from Genggahai Lake, northeastern Qinghai-Tibetan Plateau (China). Journal of Paleolimnology 49, 575590.CrossRefGoogle Scholar
Qiang, M., Song, L., Jin, Y., Li, Y., Liu, L., Zhang, J., Zhao, Y., Chen, F., 2017. A 16-ka oxygen-isotope record from Genggahai Lake on the northeastern Qinghai-Tibetan Plateau: hydroclimatic evolution and changes in atmospheric circulation. Quaternary Science Reviews 162, 7287.CrossRefGoogle Scholar
Raddatz, T.J., Reick, C.H., Knorr, W., Kattge, J., Roeckner, E., Schnur, R., Schnitzler, K.G., Wetzel, P., Jungclaus, J., 2007. Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Climate Dynamics 29, 565574.CrossRefGoogle Scholar
Randall, D.A., Wood, R.A., Bony, S., Colman, R., Taylor, K.E., 2007. Climate models and their evaluation. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, New York, pp. 589662.Google Scholar
Rao, Z., Chen, F., Zhang, X., Xu, Y., Xue, Q., Zhang, P., 2012. Spatial and temporal variations of C3/C4 relative abundance in global terrestrial ecosystem since the Last Glacial and its possible driving mechanisms. Chinese Science Bulletin 57, 40244035.CrossRefGoogle Scholar
Rao, Z., Guo, W., Cao, J., Shi, F., Jiang, H., Li, C., 2017. Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: a global review. Earth-Science Reviews 165, 110119.CrossRefGoogle Scholar
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., et al., 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725757.CrossRefGoogle Scholar
Rotstayn, L., Collier, M., Dix, M., Feng, Y., Gordon, H., O'Farrell, S., Smith, I., Syktus, J., 2010. Improved simulation of Australian climate and ENSO-related climate variability in a GCM with an interactive aerosol treatment. International Journal of Climatology 30, 10671088.CrossRefGoogle Scholar
Sampe, T., Xie, S.-P., 2010. Large-scale dynamics of the Meiyu-Baiu rainband: environmental forcing by the Westerly Jet. Journal of Climate 23, 113134.CrossRefGoogle Scholar
Schmidt, G.A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G.L., Aleinov, I., Bauer, M., et al., 2014. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. Journal of Advances in Modeling Earth Systems 6, 141184.CrossRefGoogle Scholar
Shen, J., Liu, X., Wang, S., Matsumoto, R., 2005. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International 136, 131140.Google Scholar
Sun, Q., Wang, S., Zhou, J., Shen, J., Cheng, P., Xie, X., Wu, F., 2009. Lake surface fluctuations since the late glaciation at Lake Daihai, north central China: a direct indicator of hydrological process response to East Asian monsoon climate. Quaternary International 194, 4554.CrossRefGoogle Scholar
Sun, Y., Clemens, S.C., Morrill, C., Lin, X., Wang, X., An, Z., 2012. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nature Geoscience 5, 4649.CrossRefGoogle Scholar
Sun, Y., Wang, X., Liu, Q., Clemens, S.C., 2010. Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of northern China. Earth and Planetary Science Letters 289, 171179.CrossRefGoogle Scholar
Tan, L., Cai, Y., Cheng, H., Edwards, R.L., Gao, Y., Xu, H., Zhang, H., An, Z., 2018. Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years. Earth and Planetary Science Letters 482, 580590.CrossRefGoogle Scholar
Terry, J.P., Goff, J., 2014. Megaclasts: proposed revised nomenclature at the coarse end of the Udden-Wentworth grain-size scale for sedimentary particles. Journal of Sedimentary Research 84, 192197.CrossRefGoogle Scholar
Thompson, L.G., Mosley-Thompson, E., Wu, X., Xie, Z., 1988. Wisconsin/Würm glacial stage ice in the subtropical Dunde ice cap, China. GeoJournal 17, 517523.CrossRefGoogle Scholar
Voldoire, A., Sanchez-Gomez, E., Mélia, D.S.y, Decharme, B., Cassou, C., Sénési, S., Valcke, S., et al., 2013. The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics 40, 20912121.CrossRefGoogle Scholar
Wang, B., Liu, J., Kim, H.J., Webster, P.J., Yim, S.Y., 2012. Recent change of the global monsoon precipitation (1979–2008). Climate Dynamics 39, 11231135.CrossRefGoogle Scholar
Wang, N., Li, Z., Li, Y., Cheng, H., 2013. Millennial-scale environmental changes in the Asian monsoon margin during the Holocene, implicated by the lake evolution of Huahai Lake in the Hexi Corridor of northwest China. Quaternary International 313–314, 100109.CrossRefGoogle Scholar
Wang, N., Li, Z., Li, Y., Zhu, J., 2011. The Chronology and characteristics of sediments since late glacial in Huahai Lake, Hexi Corridor, NW China. Acta Sedimentologica Sinica 29, 552560. [in Chinese]Google Scholar
Wang, P., Wang, B., Cheng, H., Fasullo, J., Guo, Z., Kiefer, T., Liu, Z., 2017. The global monsoon across time scales: mechanisms and outstanding issues. Earth-Science Reviews 174, 84121.CrossRefGoogle Scholar
Wang, W., Feng, Z., 2013. Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: a synthesis of climatic records. Earth-Science Reviews 122, 3857.CrossRefGoogle Scholar
Wang, Y., Cheng, H., Edwards, R., An, Z., Wu, J., Shen, C., Dorale, J., 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 23452348.CrossRefGoogle ScholarPubMed
Wang, Y., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M., Dykoski, C., 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854857.CrossRefGoogle ScholarPubMed
Wang, Y., Liu, X., Herzschuh, U., 2010. Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth-Science Reviews 103, 135153.CrossRefGoogle Scholar
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., et al., 2011. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development 4, 845872.CrossRefGoogle Scholar
Weltje, G.J., Prins, M.A., 2003. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics. Sedimentary Geology 162, 3962.CrossRefGoogle Scholar
Wen, R., Xiao, J., Chang, Z., Zhai, D., Xu, Q., Li, Y., Itoh, S., Lomtatidze, Z., 2010. Holocene climate changes in the mid-high-latitude-monsoon margin reflected by the pollen record from Hulun Lake, northeastern Inner Mongolia. Quaternary Research 73, 293303.CrossRefGoogle Scholar
Wolff, C., Plessen, B., Dudashvilli, A.S., Breitenbach, S.F., Cheng, H., Edwards, L.R., Strecker, M.R., 2017. Precipitation evolution of Central Asia during the last 5000 years. The Holocene 27, 142154.CrossRefGoogle Scholar
Wu, D., Zhou, A.F., Chen, X.M., Yu, J.Q., Zhang, J.W., Sun, H.L., 2015. Hydrological and ecosystem response to abrupt changes in the Indian monsoon during the last glacial, as recorded by sediments from Xingyun Lake, Yunnan, China. Palaeogeography, Palaeoclimatology, Palaeoecology 421, 1523.CrossRefGoogle Scholar
Wu, D., Zhou, A., Zhang, J., Chen, J., Li, G., Wang, Q., Chen, L., et al., 2020. Temperature-induced dry climate in basins in the northeastern Tibetan Plateau during the Early to Middle Holocene. Quaternary Science Reviews 237, 106311. https://doi.org/10.1016/j.quascirev.2020.106311.CrossRefGoogle Scholar
Wu, R., 1993. Magnetic susceptibility and frequency dependent susceptibility of lake sediments and their paleoclimatic implication—the case of recent sediments of Qinghai Lake and Daihai Lake. Journal of Lake Sciences 5, 128135. [in Chinese]Google Scholar
Wünnemann, B., Hartmann, K., Janssen, M., Zhang, H.C., 2007. Responses of Chinese desert lakes to climate instability during the past 45,000 years. In: Madsen, D.B., Chen, F.H., Gao, X. (Eds.), Late Quaternary Climate Change and Human Adaptation in Arid China. Developments in Quaternary Science, vol. 9, Elsevier, Amsterdam, pp. 1124.CrossRefGoogle Scholar
Xiao, J., Fan, J., Zhou, L., Zhai, D., Wen, R., Qin, X., 2013. A model for linking grain size component to lake level status of a modern clastic lake. Journal of Asian Earth Sciences 69, 149158.CrossRefGoogle Scholar
Xiao, J., Nakamura, T., Lu, H., Zhang, G., 2002. Holocene climate changes over the desert/loess transition of north-central China. Earth and Planetary Science Letters 197, 1118.CrossRefGoogle Scholar
Xiao, J., Wu, J., Si, B., Liang, W., Nakamura, T., Liu, B., Inouchi, Y., 2006. Holocene climate changes in the monsoon/arid transition reflected by carbon concentration in Daihai Lake of Inner Mongolia. The Holocene 16, 551560.CrossRefGoogle Scholar
Yan, D., Wünnemann, B., 2014. Late Quaternary water depth changes in Hala Lake, northeastern Tibetan Plateau, derived from ostracod assemblages and sediment properties in multiple sediment records. Quaternary Science Reviews 95, 95114.CrossRefGoogle Scholar
Yang, B., Qin, C., Bräuning, A., Osborn, T.J., Trouet, V., Ljungqvist, F.C., Esper, J., et al., 2021. Long-term decrease in Asian monsoon rainfall and abrupt climate change events over the past 6,700 years. Proceedings of the National Academy of Sciences 118, e2102007118. https://doi.org/10.1073/pnas.2102007118.CrossRefGoogle ScholarPubMed
Yang, X., Liu, T., Xiao, H., 2003. Evolution of megadunes and lakes in the Badain Jaran Desert, Inner Mongolia, China during the last 31000 yrs. Quaternary International 104, 99112.CrossRefGoogle Scholar
Yang, X., Ma, N., Dong, J., Zhu, B., Xu, B., Ma, Z., Liu, J., 2010. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China. Quaternary Research 73, 1019.CrossRefGoogle Scholar
Yang, X., Scuderi, L., Paillou, P., Liu, Z., Li, H., Ren, X., 2011. Quaternary environmental changes in the drylands of China—a critical review. Quaternary Science Reviews 30, 32193233.CrossRefGoogle Scholar
Yao, T.D., G.Thompson, [sic] L., 1992. Dunde ice core record and past 5 ka temperature change. Science in China Series B-Chemistry, Life Sciences & Earth Sciences 22, 10891093. https://doi.org/10.1360/zb1992-22-10-1089. [in Chinese]Google Scholar
Yu, S., Ricketts, R.D., Colman, S.M., 2009. Determining the spatial and temporal patterns of climate changes in China western interior during the last 15 ka from lacustrine oxygen isotope records. Journal of Quaternary Science 24, 237247.CrossRefGoogle Scholar
Yuan, D., Cheng, H., Edwards, R.L., Dykoski, C.A., Kelly, M.J., Zhang, M., Qing, J., et al., 2004. Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304, 575578.CrossRefGoogle ScholarPubMed
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T.Y., Shindo, E., Tsujino, H., Deushi, M., 2012. A new global climate model of the Meteorological Research Institute—MRI-CGCM3—model description and basic performance. Journal of the Meteorological Society of Japan 90A, 2364.Google Scholar
Zhang, H., Ming, Q., Lei, G., Zhang, W., Fan, H., Chang, F., Wünnemann, B., Hartmann, K., 2006. Dilemma of dating on lacustrine deposits in an hyperarid inland basin of NW China. Radiocarbon 48, 219226.CrossRefGoogle Scholar
Zhang, J., Alexander, M.R., Gou, X., Deslauriers, A., Fonti, P., Zhang, F., Pederson, N., 2020. Extended xylogenesis and stem biomass production in Juniperus przewalskii Kom. during extreme late-season climatic events. Annals of Forest Science 77, 99. https://doi.org/10.1007/s13595-020-01008-1.CrossRefGoogle Scholar
Zhang, Q., Zhang, Y., Zhao, Y., Ma, J., 2011. Geochemical evolution of groundwater and hydrogeochemical modeling in Jinta Basin. Arid Land Geography 34, 772778.Google Scholar
Zhang, X., Jin, L., Huang, W., Chen, F., 2016. Forcing mechanisms of orbital- scale changes in winter rainfall over northwestern China during the Holocene. The Holocene 26, 549555.CrossRefGoogle Scholar
Zhang, X., Jin, L., Lu, H., Park, W., Schneider, B., Latif, M., 2018. East-west contrast of northeast Asian summer precipitation during the Holocene. Global and Planetary Change 170, 190200.CrossRefGoogle Scholar
Zhang, X., Liu, B., Chen, S., Fu, Z., Xie, T., Chen, F., 2022. Increased water vapor supply in winter and spring leading to the arid Central Asian wetting in last 6000 years. Science China Earth Sciences 65, 13531367.CrossRefGoogle Scholar
Zhang, Z., We, R., Wang, S., 1998. Implication of magnetic frequency dependent susceptibility on environmental variation from lacustrine sediment in Daihai Lake. Geographical Research 17, 297302. [in Chinese]Google Scholar
Zhao, C., Yu, Z., Zhao, Y., Ito, E., Kodama, K. P., Chen, F., 2010. Holocene millennial-scale climate variations documented by multiple lake-level proxies in sediment cores from Hurleg Lake, northwest China. Journal of Paleolimnology 44, 9951008.CrossRefGoogle Scholar
Zhao, Q., Wang, N., Li, X., Cheng, H., Li., Y., Li, G., 2005. Environmental change around the Qingtu Lake since 9500 a BP. Journal of Glaciology and Geocryology 27, 352359.Google Scholar
Zhao, Y., Wu, F., Fang, X., Yang, Y., 2017. Altitudinal variations in the bulk organic carbon isotopic composition of topsoil in the Qilian Mountains area, NE Tibetan Plateau, and its environmental significance. Quaternary International 454, 4555.CrossRefGoogle Scholar
Zhao, Y., Yu, Z., Chen, F., Ito, E., Zhao, C., 2007. Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, northwest China. Review of Palaeobotany and Palynology 145, 275288.CrossRefGoogle Scholar
Zheng, S., Shangguan, Z., 2007. Spatial patterns of foliar stable carbon isotope compositions of C3 plant species in the Loess Plateau of China. Ecological Research 22, 342353.CrossRefGoogle Scholar
Zhong, W., Xue, J.B., Cao, J., Zheng, Y., Ma, Q., Jun, O., Cai, Y., Zeng, Z., Liu, W., 2010. Bulk organic carbon isotope record of lacustrine sediments in Dahu Swamp, eastern Nanling Mountains in South China: implication for catchment environmental and climatic changes in the last 16000 years. Journal of Asian Earth Sciences 38, 162169.Google Scholar
Zhou, A., 2007. Varve Chronology and Late Holocene Environmental Changes in Sugan Lake, Northern Qaidam Basin. PhD thesis, Lanzhou University, Lanzhou, Gansu, China.Google Scholar
Zhou, W., Head, J., Deng, L., 2001. Climatic changes in northern China since the late Pleistocene and its response to global change. Quaternary International 83–85, 285292.CrossRefGoogle Scholar
Zhou, X., Li, Y., Zhang, C., Wang, Y., 2013. The response of organic geochemical proxies in Holocene lake sediments to millennial-scale climate change. Journal of Salt Lake Research 2013 (4), 19. [in Chinese]Google Scholar
Supplementary material: File

Peng et al. supplementary material

Figure S1 and Tables S1-S2

Download Peng et al. supplementary material(File)
File 572.4 KB