Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T04:30:21.130Z Has data issue: false hasContentIssue false

Late Holocene precipitation variability recorded in the sediments of Reloncaví Fjord (41°S, 72°W), Chile

Published online by Cambridge University Press:  20 January 2017

Lorena Rebolledo*
Affiliation:
Centro de Investigación Oceanográfica en el Pacífico Sur-Oriental (COPAS), Universidad de Concepción, Chile Programa COPAS Sur-Austral, Universidad de Concepción, Chile Departamento de Oceanografía, Universidad de Concepción, Chile
Carina B. Lange
Affiliation:
Centro de Investigación Oceanográfica en el Pacífico Sur-Oriental (COPAS), Universidad de Concepción, Chile Programa COPAS Sur-Austral, Universidad de Concepción, Chile Departamento de Oceanografía, Universidad de Concepción, Chile
Sébastien Bertrand
Affiliation:
Renard Centre of Marine Geology, Ghent University, Belgium
Práxedes Muñoz
Affiliation:
Departamento de Biología Marina, Facultad de Ciencias del Mar, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile
Marco Salamanca
Affiliation:
Departamento de Oceanografía, Universidad de Concepción, Chile Programa de Monitoreo del Ambiente Marino (PROMNA), Universidad de Concepción, Chile
Pablo Lazo
Affiliation:
Departamento de Oceanografía, Universidad de Concepción, Chile
José L. Iriarte
Affiliation:
Programa COPAS Sur-Austral, Universidad de Concepción, Chile Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Chile
Gabriel Vargas
Affiliation:
Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
Silvio Pantoja
Affiliation:
Centro de Investigación Oceanográfica en el Pacífico Sur-Oriental (COPAS), Universidad de Concepción, Chile Programa COPAS Sur-Austral, Universidad de Concepción, Chile Departamento de Oceanografía, Universidad de Concepción, Chile
Laurent Dezileau
Affiliation:
Université de Montpellier 2, 34095 Montpellier cedex 05, France
*
*Corresponding author at: Centro de Investigación Oceanográfica en el Pacífico Sur-Oriental (COPAS), Universidad de Concepción, Chile.E-mail address:lrebolle@udec.cl (L. Rebolledo).

Abstract

We present reconstructions of late Holocene changes in the source of organic matter and siliceous export production in the Relocanví Fjord (41°S, 72°W), Northern Chilean Patagonia, based on organic carbon content, δ13Corg, N/C ratio, diatom assemblages and biogenic silica contents from three sediment cores. The age models are based on a combination of 210Pb profiles, AMS 14C dating, and on the first occurrence of the diatom Rhizosolenia setigera f. pungens, as a stratigraphic marker in the fjords. The cores span the last 300 to 700 yr. Diatoms dominate the siliceous assemblages in the three cores (98% on average). Our results suggest that precipitation seasonality in the region of Reloncaví was high in CE 1300–1400 and CE 1700–1850, with a clear decreasing trend since CE 1850. The latter trend is in agreement with instrumental records and tree-ring reconstructions. These fluctuations seem to be associated with the Southern Annular Mode (SAM).

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acha, E.M. Mianzan, H.W. Guerrero, R. Favero, M. Bava, J. (2004). Marine fronts at the continental shelve of austral South America physical and ecological processes. Journal of Marine Systems 44, 1-2 83105.CrossRefGoogle Scholar
Adriasola, A.C. Stöckhert, B. (2008). Cooling histories and deformation of plutonic rocks along the Liquiñe-Ofqui Fault Zone at the Los Lagos Region of Chile, 41°–42°15′S. Revista Geologica de Chile 35, 3961.Google Scholar
Alves-de-Souza, C. González, M. Iriarte, J.L. (2008). Functional groups in marine phytoplankton assemblage dominated by diatoms in fjords of southern Chile. Journal of Plankton Research 30, 11 12331243.Google Scholar
Appleby, P.G. Oldfield, F. (1978). The calculation of lead–210 dates assuming a constant rate supply of unsupported 210Pb to the sediment. Catena 5, 18.Google Scholar
Aracena, C. Lange, C.B. Iriarte, J.L. Rebolledo, L. Pantoja, S. (2011). Latitudinal patterns of export production recorded in surface sediments of the Chilean Patagonian fjord (41–55°S) as response to water column productivity. Continental Shelf Research 31, 340355.Google Scholar
Aravena, J.C. Luckman, B.H. (2008). Spatio-temporal rainfall patterns in southern South America. International Journal of Climatology http://dx.doi.org/10.1002/JOC.1761Google Scholar
Araya-Vergara, J.F. Viera, R. Suárez, R. (2008). El sistema submarino Reloncaví (Norpatagonia): Análisis morfoacústico, Batimetría y manto sedimentario reciente. Ciencia y Tecnología del Mar 31, 2 527.Google Scholar
Bertrand, S. Fagel, N. (2008). Nature, origin, transport and deposition of andosol parent material in south-central Chile (36–42°S). Catena 73, 1 1022.Google Scholar
Bertrand, S. Boës, X. Castiaux, J. Charlet, F. Urrutia, R. Espinoza, C. Lepoint, G. Charlier, B. Fagel, N. (2005). Temporal evolution of sediment supply in Lago Puyenue (Southern Chile) during the last 600 yr and its climatic significance. Quaternary Research 64, 2 163175.Google Scholar
Bertrand, S. Hughen, K. Sepúlveda, J. Pantoja, S. (2012). Geochemistry of surface sediments from the fjords of Northern Chilean Patagonia (44–47°S): spatial variability and implications for paleoclimate reconstructions. Geochimica et Cosmochimica Acta 76, 1 125146.Google Scholar
Bertrand, S. Araneda, A. Vargas, P. Jara, P. Fagel, N. Urrutia, R. (2012). Using the N/C ratio to correct bulk radiocarbon ages from lake sediments: insights from Chilean Patagonia. Quaternary Geochronology 12, 2329.Google Scholar
Bertrand, S. Hughen, K.A. Lamy, F. Stuut, J.B. Torrejón, F. Lange, C.B. (2012). Precipitations the main driver of Neoglacial fluctuations of Gualas Glacier, Northern Patagonian Icefield. Climate of the Past 8, 519534.Google Scholar
Bertrand, S. Hughen, K. Sepúlveda, J. Pantoja, S. (2014). Late Holocene covariability of the southern westerlies and sea surface temperature in northern Chilean Patagonia. Quaternary Science Reviews 105, 195208.CrossRefGoogle Scholar
Bertrand, S. Daga, R. Bedert, R. Fontijn, K. (2014). Deposition of the 2011–2012 Cordón Caulle tephra (Chile, 40° S) in lake sediments: implications for tephrochronology and volcanology. Journal of Geophysical Research, Earth Surface 119, 25552573.CrossRefGoogle Scholar
Blaauw, M. (2010). Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512518.CrossRefGoogle Scholar
Bloesch, J. Evans, R.D. (1982). Lead–210 dating of sediments compared with accumulation rates estimated by natural markers and measured with sediment traps. Hydrobiologia 92, 579587.CrossRefGoogle Scholar
Blott, S.J. Pye, K. (2001). Gradistat: a grain size distributions and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26, 12331248.Google Scholar
Brower, J.E. Zar, J.H. Von Ende, C.N. (1998). Field and Laboratory Methods for General Ecology. McGraw-Hill, Dubuque, Iowa, USA. (194 pp.)Google Scholar
Caniupán, M. Lamy, F. Lange, C.B. Kaiser, J. Kilian, R. Arz, H.W. León, T. Mollenhauer, G. Sandoval, S. De Pol-Holz, R. Pantoja, S. Wellner, J. Tidemann, R. (2014). Holocene sea surface temperature variability in the Chilean fjord. Quaternary Research 82, 2 342353.Google Scholar
Castillo, M.I. Pizarro, O. Cifuentes, U. Ramirez, N. Djurfeldt, L. (2012). Subtidal dynamics in a deep Fjord of southern Chile. Continental Shelf Research 49, 7389.CrossRefGoogle Scholar
Cembrano, J. Lara, L. (2009). The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471, 96113. http://dx.doi.org/10.1016/j.tecto.2009.02.038Google Scholar
Chapron, E. Ariztegui, D. Mulsow, S. Villarosa, G. Pino, M. Outes, V. Juviginé, E. Crivelli, E. (2006). Impact of 1960 major subduction earthquake in Northern Patagonia (Chile, Argentina). Quaternary International 158, 5871.CrossRefGoogle Scholar
Cisternas, M. Atwater, B. Torrejón, F. Sawai, Y. Machuca, G. Lagos, M. Eipert, A. Youlton, C. Salgado, I. Kamataki, T. Shishikura, M. Rajendran, C.P. Malik, J. Rizal, Y. Husni, M. (2005). Predecessors of the giant 1960 Chile earthquake. Nature 437, 404407.Google Scholar
Cochran, J.K. Frignani, M. Salamanca, M. Belluci, L.G. Guerzoni, S. (1998). Lead–210 as a tracer of atmospheric input of heavy metals in the northern Venice Lagoon. Marine Chemistry 62, 1529.CrossRefGoogle Scholar
Cupp, E.E. (1943). Marine plankton diatoms of the west coast of North America. Bulletin of the Scripps Institution of Oceanography 5, 1238.Google Scholar
Elbert, J. Grosjean, M. von Gunten, L. Urrutia, R. Fisher, P. Waternburg, R. Ariztegui, D. Fujak, M. Hamann, Y. (2011). Quantitative high-resolution winter (JJA) precipitation reconstruction from varved sediments of Lago Plomo 47°S Patagonian Andes, AD 1530–2002. The Holocene 22, 4 465474.CrossRefGoogle Scholar
Fletcher, M.S. Moreno, P.I. (2012). Vegetation, climate and fire regime changes in the Andean region of the southern Chile (38° S) covaried with centennial-scale climate anomalies in the tropical Pacific over the last 1500 years. Quaternary Science Reviews 46, 4656.Google Scholar
Fontijn, M. Lachowycz, S.M. Rawson, H. Pyle, D.M. Mather, T.A. Naranjo, J.A. Moreno-Roa, H. (2014). Late Quaternary tephrostratigraphy of southern Chile and Argentina. Quaternary Science Reviews 89, 7084.Google Scholar
Garreaud, R.D. Vuille, M. Compagnucci, R. Marengo, J. (2009). Present-day South American Climate. Palaeogeography, Palaeoclimatology, Palaeoecology 180–195, Google Scholar
Garreaud, R.D. Lopez, P. Minvielle, M. Rojas, M. (2013). Large-Scale control on the Patagonian climate. American Meteorological Society 26, 215230.Google Scholar
Garret, E. Shennam, I. Watcham, E.P. Woodroffe, S.A. (2013). Reconstructing paleoseismic deformation, 1: modern analogues from the 1960 and 2010 Chilean earthquakes. Quaternary Science Reviews 75, 1121.Google Scholar
González, H.G. Calderón, M.J. Castro, L. Clement, A. Cuevas, L. Daneri, G. Iriarte, J.L. Lizárraga, L. Martínez, R. Menschel, E. Silva, N. Carrasco, C. Valenzuela, C. Vargas, C.A. Molinet, C. (2010). Primary production and its fate in the pelagic food web of the Reloncaví Fjord and plankton dynamics of the Interior Sea of Chiloé, Northern Patagonia, Chile. Marine Ecology Progress Series 402, 1330.Google Scholar
Hasle, G.R. Syvertsen, E.E. Marine diatoms. Tomas, C.R. (1996). Identifying Marine Diatoms and Dinoflagellates. Academic Press, Inc., San Diego. 5385.Google Scholar
Hebbeln, D. Marchant, M. Freudenthal, T. Wefer, G. (2000). Surface sediment distribution along the Chilean continental slope related to upwelling and paleoproductivity. Marine Geology 164, 119137.Google Scholar
Hemphill-Haley, E. (1996). Diatoms as an aid in identifying late-Holocene tsunami deposits. The Holocene 6, 439448.Google Scholar
Horton, B.P. Sawai, Y. Hawkes, A.D. Witter, R.C. (2011). Sedimentology and paleontology of a tsunami deposit accompanying the great Chilean earthquake of February 2010. Marine Micropaleontology 79, 132138.Google Scholar
Iriarte, J.L. González, H.E. (2008). Phytoplankton bloom ecology of the Inner Sea of Chiloé, Southern Chile. Nova Hedwigia 133, 6779.Google Scholar
Iriarte, J.L. González, H.E. Liu, K.K. Rivas, C. Valenzuela, C. (2007). Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5–43° S). Estuarine, Coastal and Shelf Science 74, 471480.Google Scholar
Iriarte, J.L. González, H.E. Nahuelhal., L., (2010). Patagonian fjord ecosystem in southern Chile as a highly vulnerable region: problems and needs. Ambio 39, 7 436466.CrossRefGoogle ScholarPubMed
Jara, I.A. Moreno, P.I. (2012). Temperate rainforest response to climate change and disturbance agents in Northwestern Patagonia (41°S) over the last 2600 years. Quaternary Research 77, 235244.Google Scholar
Kilian, R. Lamy, F. (2012). A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55°S). Quaternary Science Reviews 53, 123.Google Scholar
Kilian, R. Lamy, F. Arz, H. (2013). Late Quaternary variations of the southern westerly wind belt and its influences on aquatic ecosystems and glacier extend within the southernmost Andes. German Journal of Geosciences 164, 279294.Google Scholar
Lamy, F. Ruhlemann, C. Hebbeln, D. Wefer, G. (2002). High and low latitude climate control on the position of the southern Peru Chile Current during, the Holocene. Paleoceanography 17, 2 Google Scholar
Lamy, F. Kilian, R. Arz, H.W. Francois, J.P. Kaiser, J. Prange, M. Steinke, T. (2010). Holocene changes in the position and intensity of the southern westerly wind belt. Nature Geoscience 3, 695699.Google Scholar
Lange, D. Cembrano, J. Rietbrock, A. Haberland, C. Dahm, T. Bataille, K. (2008). First seismic record for intra-arc strike–slip tectonics along the Liquiñe-Ofqui fault zone at the obliquely convergent plate margin of the southern Andes. Tectonophysics 455, 1424.Google Scholar
Lara, A. Villalba, R. Urrutia, R. (2008). A 400-year tree-ring record of the Puelo River summer–fall streamflow in the Valdivian Rainforest eco-region. Climate Change 86, 331356.Google Scholar
Legrand, D. Barrientos, S. Bataille, K. Cembrano, J. Pavez, A. (2011). The fluid-driven tectonic swarm of Aysén Fjord, Chile (2007) associated with two earthquakes (Mw = 6.1 and Mw = 6.2) within the Liquiñe-Ofqui Fault Zone. Continental Shelf Research 31, 154161.Google Scholar
León-Muñoz, J. Marcé, R. Iriarte, J.L. (2013). Influence of hydrological regime o fan Andean river on salinity, temperature and oxygen in a Patagonian fjord, Chile. New Zealand Journal of Marine and Freshwater Research http://dx.doi.org/10.1080/00288330.2013.802700Google Scholar
Marín, J. (2014). Reconstruction of the exported siliceous productivity in the Reloncaví fjord (41 S, 72 W), Chilean Patagonia. Undergraduate thesis, Marine Biology University of Concepción, Chile. 57 ppGoogle Scholar
Mayr, C.C. Försterra, G. Häussermann, V. Wunderlich, A. Grau, J. Zieringer, M. Altenbach, A.V. (2011). Stable isotope variability in a Chilean fjord food web: implications for N- and C-cycles. Marine Ecology Progress Series 428, 89104.Google Scholar
Mayr, C.C. Rebolledo, L. Schulte, K. Schuster, A. Zolitschka, B. Fösterra, G. Häusserman, V. (2014). Responses of nitrogen and carbon deposition rates in Comau Fjord (42°S, Southern Chile) to natural and anthropogenic impacts during the last century. Continental Shelf Research 78, 2938.Google Scholar
Mazzullo, J. Gilbert, A. Rabinowitz, P. Meyer, A. Garrison, L. (1988). Handbook for Shipboard Sedimentologists. (67 pp.)Google Scholar
McCormac, F.G. Hogg, A.G. Blackwell, P.G. Buck, C.E. Higham, T.F.G. Reimer, P.J. (2004). SHCal04 Southern Hemisphere calibration, 0–11 Cal kyr B.P.. Radiocarbon 46, 10871092.Google Scholar
McQuoid, M.R. Nordberg, K. (2003). Environmental influence on the diatom andsilicoflagellate assemblages in Koljö fjord (Sweeden) over the last two centuries. Estuaries 26, 927937.Google Scholar
Meyers, P.A. (1997). Organic geochemical proxies of paleoceanographic paleolimnologic and paleoclimatic processes. Organic Geochemistry 27, 213250.Google Scholar
Moernaut, J. Van Deele, M. Heirman, K. Fontjin, K. Strasser, M. Pino, M. De Batist, M. (2014). Lacustrine turbidites as tool for quantitative earthquake reconstruction: new evidence for a variable rupture model in south central Chile. Journal of Geophysical Research, Solid Earth 119, http://dx.doi.org/10.1002/2013jb010738CrossRefGoogle Scholar
Mohtadi, M. Romero, O.E. Kaiser, J. Hebbeln, D. (2007). Cooling of the southern high latitudes during the Medieval Period and its effect on ENSO. Quaternary Science Reviews 26, 10551066.Google Scholar
Montade, V. Nebout, N.C. Chapron, E. Mulsow, S. Abarzúa, A.M. Debret, M. Foucher, A. Desmet, M. Winiarski, T. Kiessel, C. (2012). Regional vegetation and climate changes during the last 13 Kyr from a marine pollen record in Seno Reloncaví, southern Chile. Review of Palaeobotany and Palynology 181, 1121.Google Scholar
Montero, P. Giovani, G. González, H.E. Iriarte, J.L. Tapia, F.J. Lizárraga, L. Sánchez, N. Pizarro, O. (2011). Seasonal variability of primary production in a fjord ecosystem of the Chilean Patagonia: implications for the transfer of organic carbon within pelagic food webs. Continental Shelf Research 31, 202215.Google Scholar
Moreno, P.I. Vilanova, I. Villa-Martínez, R. Garreaud, R.D. Rojas, M. De Pol-Holz, R. (2014). Soutern Annular Mode-like changes in southwestern Patagonia at centennial timescales over the last three millenia. http://dx.doi.org/10.1038/ncomms5375Google Scholar
Mortlock, R. Froelich, P. (1989). A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research 36, 14151426.Google Scholar
Naranjo, J.A. Arenas, M. Clavero, J. Muñoz, O. (2009). Mass movement-induced tsunamis effects during Patagonian fjordland seismic crisis in Aisen (45°25′ S), Chile. Andean Geology 36, 1 137145.Google Scholar
Olsen, J. Rasmussen, P. Heinemeier, J. (2009). Holocene temporal and spatial variation in the radiocarbon reservoir age of three Danish fjords. Boreas 38, 458470.Google Scholar
Perdue, E.M. Koprivnjak, J.F. (2007). Using the C/N ratioto estimate terrigenous inputs of organic matter to aquatic environments. Estuarine, Coastal and Shelf Science 73, 6572.Google Scholar
Quintana, J. Aceituno, P. (2012). Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30–43° S. Atmosfera 25, 1 122.Google Scholar
Rebolledo, L. Lange, C.B. Figueroa, D. Pantoja, S. Muñoz, P. Castro, R. (2005). 20th century fluctuations in the abundance of siliceous microorganisms preserved in the sediments of the Puyuhuapi Channel (44°S), Chile. Revista Chilena de Historia Natural 78, 3 469488.Google Scholar
Rebolledo, L. Sepúlveda, J. Lange, C. Pantoja, S. Bertrand, S. Hughen, K. Figueroa, D. (2008). Late Holocene marine productivity changes in Northern Patagonia-Chile inferred from a multi-proxy analysis of Jacaf channel sediments. Estuarine, Coastal and Shelf Science 80, 314322.Google Scholar
Rebolledo, L. González, H.E. Muñoz, P. Iriarte, J.L. Lange, C.B. Pantoja, S. Salamanca, M. (2011). Siliceous productivity changes in Gulf of Ancud sediments (42°S, 72°W), southern Chile, over the last ~ 150 years. Continental Shelf Research 31, 356365.Google Scholar
Rebolledo, L. Lange, C. Muñoz, P. Salamanca, M. (2014). Geochemical evidence of past earthquakes in sediments of Reloncaví fjord (Chilean Patagonia) during the last ~ 1000 years. Geophysical Research Abstract EGU2014–15575.Google Scholar
Rivera, P. (1981). Beiträge zur Taxonomie und Verbreitung der Gattung Thalassiosira Cleve. Bibliotheca Phycologica 56, 1220.Google Scholar
Round, E.E., Crawford, R.M., and Mann, D.G. (1990). The Diatoms: Biology and Morphology of the Genera. Elsevier Inc., Cambridge. (747 pp.)Google Scholar
Sancetta, C. Villareal, T. Falkowski, P. (1991). Massive fluxes of Rhizosolenid diatoms: a common ocurrence?. Limnology and Oceanography 36, 7 14521457.CrossRefGoogle Scholar
Schrader, H. Gersonde, S. (1978). Diatoms and silicoflagellates in the eight meters section of the lower Pliocene on Campo Rosello. Utrecht Micropaleontological Bulletin 17, 129176.Google Scholar
Sepúlveda, J. Pantoja, S. Hughen, K. Lange, C. González, F. Muñoz, P. Rebolledo, L. Castro, R. Contreras, S. Ávila, A. Rossel, P. Lorca, G. Salamanca, M. Silva, N. (2005). Fluctuations in export productivity over the last century from sediments of a southern Chilean fjord (44°S). Estuarine, Coastal and Shelf Science 65, 587600.CrossRefGoogle Scholar
Sepúlveda, J. Pantoja, S. Hughen, K.A. Bertrand, S. Figueroa, D. León, T. Drenzek, N.J. Lange, C.B. (2009). Late Holocene sea-surface temperature and precipitation variability in northern Patagonia, Chile (Jacaf Fjord, 44°S). Quaternary Research 72, 3 400409.CrossRefGoogle Scholar
Sepúlveda, J. Pantoja, S. Hughen, K.A. (2011). Sources and distribution of organic matter in northern Patagonian fjords, Chile (~ 44–47°S): a multi-tracer approach for carbon cycling assessment. Continental Shelf Research 31, 315329.Google Scholar
SERNAGEOMIN, (2003). Mapa geológico de Chile, versión digital. escala 1:100.000.Google Scholar
Shindell, D.T. Schmidt, G.A. (2004). Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophysical Research Letters 31, L18209 http://dx.doi.org/10.1029/2004GL020724Google Scholar
Sievers, H. Silva, N. Water masses and circulation in austral Chilean channels and fjords. Silva, N., and Palma, S. (2008). Progress in the oceanographic knowledge of Chilean interior waters, from Puerto Montt to Cape Horn. Comité Oceano-gráfico Nacional-Pontificia Universidad Católica de Valparaíso, Valparaíso. 5358.Google Scholar
Silva, N. Prego, R. (2002). Carbon and Nitrogen spactial segregation and stoichiometry in the surface sediments of Southern Chilean Inlets (41°–56° S). Estuarine, Coastal and Shelf Science 55, 763775.Google Scholar
Silva, N. Haro, J. Prego, R. (2009). Metals background and enrichment in the Chiloé Interior Sea sediments (Chile). Is there any segregation between fjords, channels and sounds?. Estuarine, Coastal and Shelf Science 82, 469476.Google Scholar
Silva, N. Vargas, C.A. Prego, R. (2011). Land–ocean distribution of allocthonous organic matter in the surface sediments of the Chiloé and Aysén interior seas (Chilean Northern Patagonia). Continental Shelf Research 31, 330339.Google Scholar
Sims, P.A. (1996). An Atlas of British Diatoms. Biopress Ltd, Bristol United Kingdom. (601 pp.)Google Scholar
St-Onge, G. Chapron, E. Mulsow, S. Salas, M. Viel, M. Debret, M. Foucher, A. Muldert, T. Winiarski, T. Desmet, M. Costa, P.J.M. Ghaleb, B. Jaouen, A. Locat., J., (2012). Comparison of earthquake-triggered turbidites from the Saguenay (Eastern Canada) and Reloncaví (chilean margin) Fjords: implications for paleoseismicity and sedimentology. Sedimentary Geology 243–244, 89107.Google Scholar
Thornton, S.F. McManus, J. (1994). Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science 38, 219233.Google Scholar
Tréguer, P.J. De la Rocha, C.L. (2013). The world ocean silica cycle. Annual Review of Marine Science 5, 477501.Google Scholar
Turekian, K. Cochran, K. Benninger, L. Aller, R. (1980). The sources and sinks of nuclides in Long Island Sound. Advances in Geophysics 22, 129163.CrossRefGoogle Scholar
Valle-Levinson, A. Sarkar, N. Sanay, R. Soto, D. León, J. (2007). Spatial structure of hydrography and flow in Chilean Fjord, Estuario Reloncaví. Estuaries and Coasts 30, 1 113126.Google Scholar
Van Daele, M. Versteeg, W. Pino, M. Urrutia, R. De Batist, M. (2013). Widespread deformation of basin-plain sediments in Aysén fjord (Chile) due impact by earthquake-triggered, onshore-generated mass movements. Marine Geology 337, 6779.Google Scholar
Vargas, C.A. Martínez, R.A. San Martín, V. Aguayo, M. Silva, N. Torres, R. (2011). Allochthonous subsidies of organic matter across a lake–river–fjord landscape in the Chilean Patagonia: implications for marine zooplankton in inner fjord areas. Continental Shelf Research 31, 187201.Google Scholar
Vargas, G. Rebolledo, S. Sepúlveda, S. Lahsen, A. Thiele, R. Townley, B. Padilla, C. Rauld, R. Herrera, M. Lara, M. (2013). Submarine earthquake rupture, active faulting and volcanism along the major Liquiñe-Ofqui Fault Zone and implications for seismic hazard assessment in the Patagonian Andes. Andean Geology 40, 1 141171.Google Scholar
Villalba, R. Lara, A. Masiokas, M.H. Urrutia, R. Luckman, B.H. Marshall, G.J. Mundo, I.A. Christie, D.A. Cook, E.R. Neukom, R. Allen, K. Fenwick, P. Boninsegna, J.A. Srur, A.M. Morales, M.S. Araneo, D. Palmer, J.G. Cuq, E. Aravena, J.C. Holz, A. LeQuesne, C. (2012). Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nature Geoscience 5, 793798.Google Scholar
Watt, S.F.L. Pyle, D.M. Naranjo, J.A. Mother, T.S. (2009). Landslide and tsunami hazard at Yate volcano, Chile as an example of edifice destruction on strike–slip fault zones. Bulletin of Volcanology 71, 559574.Google Scholar
Witkowski, A. Lange-Bertalot, H. Metzeltin, D. (2000). Diatom flora of marine coast I. Diversity taxonomy-identification. Iconographia diatomologica annotated diatom micrographs Vol. 7, Koeltzs Scientific Books, Königstein, Germany. (925 pp.)Google Scholar