Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T00:01:38.872Z Has data issue: false hasContentIssue false

Insect trace fossils as indicators of climatic conditions during the uppermost Pleistocene deposits in southern Brazilian Atlantic coast

Published online by Cambridge University Press:  14 December 2022

Kimberly Silva Ramos*
Affiliation:
ICHNOS Research Group, Geology Graduate Program, Unisinos University, Av. Unisinos, 950, 93022-750 São Leopoldo, RS, Brazil.
Renata Guimarães Netto
Affiliation:
ICHNOS Research Group, Geology Graduate Program, Unisinos University, Av. Unisinos, 950, 93022-750 São Leopoldo, RS, Brazil.
Daniel Sedorko
Affiliation:
ICHNOS Research Group, Geology Graduate Program, Unisinos University, Av. Unisinos, 950, 93022-750 São Leopoldo, RS, Brazil. Museu Nacional, Departamento de Geologia e Paleontologia, Federal University of Rio de Janeiro. Horto Botânico, Parque Quinta da Boa Vista, R. Gen. Herculano Gomes, 1340, São Cristóvão 20940-040, Rio de Janeiro, RJ, Brazil.
Diego Luciano Nascimento
Affiliation:
ICHNOS Research Group, Geology Graduate Program, Unisinos University, Av. Unisinos, 950, 93022-750 São Leopoldo, RS, Brazil.
*
Corresponding author email address: <kimmysramos@gmail.com>.

Abstract

The Rio Grande do Sul Coastal Plain records sea-level oscillations driven by climatic changes during Quaternary glaciations, represented as four lagoon-barrier systems, the last one forming after the last glacial maximum and still active. Marine trace fossils are reported in the Pleistocene deposits, but terrestrial burrows also occur in the eolian deposits. The insect trace fossil assemblages from the uppermost Pleistocene deposits of the lagoon-barrier system III are used as relative proxies to infer the climate regimes that controlled sedimentation prior to the last glacial maximum. Two suites occur in the eolian deposits: the Vondrichnus suite, dominated by structures produced by termites, in the basal eolian beds; and the Celliforma suite, dominated by hymenopteran (bees and wasps) structures, in the upper eolian beds. The dominance of termite nests indicates humid conditions. The shift upward to the Celliforma suite signals a change in the humidity regime and the prevalence of drier conditions. The stratigraphic position of the ichnoassemblage, above the uppermost Pleistocene marine transgressive beds that formed during the last interglacial and below the record of the last glacial maximum in this coastal plain, suggests that the last glacial interval controlled this humid-dry fluctuation.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amarante, O.A.C., Silva, F.J.L., 2002. Atlas Eólico: Rio Grande do Sul. Secretaria de Energia Minas e Comunicações. Porto Alegre: SEMC. 70 pp. http://www.isl2024.org.br/sistema/uploads/postagens/55/arquivos/atlas-eolico-rs.pdf.Google Scholar
Angulo, R.J., Lessa, G.C., de Souza, M.C., 2006. A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quaternary Science Review 25, 486506.CrossRefGoogle Scholar
Antoine, C.M., Forrest, J.R.K., 2021. Nesting habitat of ground-nesting bees: a review. Ecological Entomology 46, 143159.CrossRefGoogle Scholar
Behling, H., 2002. South and southeast Brazilian grasslands during late Quaternary times: a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 177, 1927.CrossRefGoogle Scholar
Bergqvist, L.P., Maciel, L., 1994. Icnofósseis de mamíferos (crotovinas) na planície costeira do Rio Grande do Sul. Anais da Academia Brasileira de Ciências 66, 189197.Google Scholar
Bertling, M., Braddy, S.J., Bromley, R.G., Demathieu, G.R., Genise, J., Mikuláš, R., Nielsen, J.K., et al. , 2006. Names for trace fossils: a uniform approach. Lethaia 39, 265286.CrossRefGoogle Scholar
Bonilha, R.M., Casagrande, J.C., Soares, M.R., Reis-Duarte, R.M., 2012. Characterization of the soil fertility and root system of restinga forests. Revista Brasileira de Ciência do Solo 36, 18041813.CrossRefGoogle Scholar
Bromley, R.G., 1996. Trace Fossils. Biology, Taphonomy and Applications. Chapman and Hall, London, 361 pp.Google Scholar
Buatois, L.A., Mángano, M.G., 2011. Ichnology: Organism-Substrate Interactions in Space and Time. Cambridge University Press, Cambridge, UK, 358 pp.CrossRefGoogle Scholar
Buchmann, F.S.C., Barbosa, V.P., Villwock, J.A., 1998. Sedimentologia e paleoecologia durante o máximo transgressivo holocênico na Lagoa Mirim, RS, Brasil. Acta Geológica Leopoldensia 21, 2126.Google Scholar
Buchmann, F.S.C., Tomazelli, L.J., 2003. Relict nearshore shoals of Rio Grande do Sul, southern Brazil: origin and effects on nearby modern beaches. Journal of Coastal Research 35, 318322.Google Scholar
Clapperton, C.M., 1993. Nature of environmental changes in South America at the last glacial maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 189208.CrossRefGoogle Scholar
Clark, P.U., Dykejeremy, A.S., Shakunanders, D., Carlsonjorie, E., Wohlfarthjerry, C., Mitrovicasteven, X., Hostetlerand, W., Mccabe, A.M., 2009. The last glacial maximum. Science 325, 710714.CrossRefGoogle ScholarPubMed
del Valle, L., Genise, J.F., Pons, G.X., Pomar, F., Vicens, D., Fornós, J.J., 2020. Insect trace fossils in Pleistocene deposits from the Pityusic Islands (Balearic Archipelago, Western Mediterranean): ichnotaxonomy and palaeoenvironmental significance. Quaternary International 553, 8393.CrossRefGoogle Scholar
Dillenburg, S.R., Barboza, E.G., Tomazelli, L.J., Hesp, P.A., Clerot, L.C.P., Ayup-Zouain, R.N., 2009. The Holocene coastal barriers of Rio Grande do Sul. In: Dillenburg, S.R., Hesp, P.A. (Eds.), Geology and Geomorphology of Holocene Coastal Barrier of Brazil. Lecture Notes in Earth Science 107, pp. 5391.CrossRefGoogle Scholar
Dillenburg, S.R., Roy, P.S., Cowell, P.J., Tomazelli, L.J., 2000. Influence of antecedent topography on coastal evolution as tested by the shoreface translation-barrier model (STM). Journal of Coastal Research 16, 7181.Google Scholar
Duringer, P., Schuster, M., Genise, J.F., Mackaye, H.T., Vignaud, P., Brunet, M., 2007. New termite trace fossils: Galleries, nests and fungus combs from the Chad basin of Africa (Upper Miocene–Lower Pliocene). Palaeogeography, Palaeoclimatology, Palaeoecology 251, 323353.CrossRefGoogle Scholar
Ehlers, J., Gibbard, P., 2008. Extent and chronology of Quaternary glaciation. Episodes 31, 211218.CrossRefGoogle Scholar
Ekdale, A.A., Bromley, R.G., Loope, D.B., 2007. Ichnofacies of an ancient erg: a climatically influenced trace fossil association in the Jurassic Navajo Sandstone, southern Utah, USA. In: Miller, W., III, (Ed.), Trace Fossils. Concepts, Problems, Prospects. Elsevier, Amsterdam, pp. 562564.Google Scholar
Ellis, R., Palmer, M., 2016. Modulation of ice ages via precession and dust-albedo feedbacks. Geoscience Frontiers 7, 891909.CrossRefGoogle Scholar
Ernst, C.M., Buddle, C.M., 2015. Drivers and patterns of ground-dwelling beetle biodiversity across northern Canada. PLoS ONE 10, e0122163. https://doi.org/10.1371/journal.pone.0122163.CrossRefGoogle ScholarPubMed
Fairbanks, R.G. 1989. A 17,000-year glacio-eustatic sea-level record: influence of glacial melting rates on the younger rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637642.CrossRefGoogle Scholar
Fornós, J.J., Clemmensen, L.B., Gómez-Pujol, L., Murray, A., 2009. Late Pleistocene carbonate aeolianites on Mallorca, western Mediterranean: a luminescence chronology. Quaternary Science Reviews 28, 26972709.CrossRefGoogle Scholar
Freitas, G.P., Francischini, H., Tâmega, F.T.S., Spotorno-Oliveira, P., Dentzien-Dias, P., 2020. On ex situ Ophiomorpha and other burrow fragments from the Rio Grande do Sul Coastal Plain, Brazil: paleobiological and taphonomic remarks. Journal of Paleontology 94, 11481164.CrossRefGoogle Scholar
Genise, J.F., 1995. Upper Cretaceous trace fossils in permineralized plant remains from Patagonian, Argentina. Ichnos 3, 287299.CrossRefGoogle Scholar
Genise, J.F., 1997. A fossil termite nest from the Marplatan Stage (Late Pliocene) of Argentina: palaeoclimatic indicator. Palaeogeography, Palaeoclimatology, Palaeoecology 136, 139144.CrossRefGoogle Scholar
Genise, J.F., 2017. Ichnoentomology: Insect Traces in Soils and Paleosols. Topics in Geobiology 37. Springer, New York, 695 pp.CrossRefGoogle Scholar
Genise, J.F., Alonso-Zarza, A.M., Krause, J.M., Sánchez, M.V., Sarzetti, L.C., Farina, J.L., González, M.G., Cosarinsky, M., Bellosi, E.S., 2010. Rhizolith balls from the Lower Cretaceous of Patagonia: just roots or the oldest evidence of insect agriculture? Palaeogeography, Palaeoclimatology, Palaeoecology 287, 128142.CrossRefGoogle Scholar
Genise, J.F., Bellosi, E.S., Gonzalez, M.G., 2004. An approach to the description and interpretation of ichnofabrics in paleosols. In: McIlroy, D. (Ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society, London Special Publication 228, 355382.Google Scholar
Genise, J.F., Mángano, M.G., Buatois, L.A., Laza, J.H., Verde, M., 2000. Insect trace fossil associations in paleosols: the Coprinisphaera ichnofacies. Palaios 15, 4964.2.0.CO;2>CrossRefGoogle Scholar
Gibert, J.M. de, Netto, R.G., Tognoli, F.M.W., Grangeiro, M.E., 2006. Commensal worm traces and possible juvenile thalassinidean burrows associated with Ophiomorpha nodosa, Pleistocene, southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 230, 7084.CrossRefGoogle Scholar
Grassé, P., 1986. Termitologia, Tome III: Anatomie, Physiologie, Biologie, Systématique des Termites. Masson, Paris, 715 pp.Google Scholar
Hansen, J., Sato, M., Russell, G., Kharecha, P., 2013. Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophic Transactions of the Royal Society A 371, 20120294. https://doi.org/10.1098/rsta.2012.0294.CrossRefGoogle ScholarPubMed
Hesp, P.A., 1991. Ecological processes and plant adaptations on coastal dunes. Journal of Arid Environments 21, 165191.CrossRefGoogle Scholar
Hill, J.L., Vater, A.E., Geary, A.P., Matthews, J.A., 2018. Chronosequences of ant nest mounds from glacier forelands of Jostedalsbreen, southern Norway: insights into the distribution, succession and geo-ecology of red wood ants (Formica lugubris and F. aquilonia). The Holocene 28, 11131130.CrossRefGoogle Scholar
Hulton, N.R.J., Purves, R.S., McCulloch, R.D., Sugden, D.E., Bentley, M.J., 2002. The last glacial maximum and deglaciation in southern South America. Quaternary Science Reviews 21, 233241.CrossRefGoogle Scholar
Imbrie, J.D., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J., 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G., Saltzman, B. (Eds.), Milankovitch, and Climate. Part 1. D. Reidel Publishing Company, Dordrecht, pp. 269305.Google Scholar
Lamb, S.D., McCombe, G.G.I., Lawrence, E., Macwan, R., Mayer, T., Jandt, J.M., 2020. Subterranean nesting behaviour in response to soil moisture conditions in the southern ant, Monomorium antarcticum Smith (Hymenoptera: Formicidae). New Zealand Entomologist 43, 3343.CrossRefGoogle Scholar
Laza, J.H., 2006. Termiteros del Plioceno y Pleistoceno de la Provincia de Buenos Aires, República Argentina. Significación paleoambiental y paleozoogeográfica. Ameghiniana 43, 641648.Google Scholar
Leal, R.A., Barboza, E.G., Bitencourt, V.J.B., 2022. Interdecadal climate variability identified in aeolian deposits in southern Santa Catarina, Brazil. Journal of South American Earth Sciences 113, 103636. https://doi.org/10.1016/j.jsames.2021.103636.CrossRefGoogle Scholar
Ledru, M.-P., Braga, P.I.S., Soubiès, F., Fournier, M., Martin, L., Suguio, K., Turcq, B., 1996. The last 50,000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate. Palaeogeography, Palaeoclimatology, Palaeoecology 123, 239257.CrossRefGoogle Scholar
Leite, Y.L.R., Costa, L.P., Loss, A.C., Rocha, R.G., Batalha-Filho, H., Bastos, A.C., Quaresma, V.S., et al. , 2016. Neotropical forest expansion during the last glacial period challenges refuge hypothesis. PNAS 113, 10081013.CrossRefGoogle ScholarPubMed
Lopes, R.P., Dillenburg, S.R., Savian, J.F., Pereira, J.C., 2021. The Santa Vitória Alloformation: an update on a Pleistocene fossil-rich unit in Southern Brazil. Brazilian Journal of Geology 51, e2020065. https://doi.org/10.1590/2317-4889202120200065.CrossRefGoogle Scholar
Lopes, R.P., Dillenburg, S.R., Schultz, C.L., 2016. Cordão Formation: loess deposits in the southern coastal plain of the state of Rio Grande do Sul. Brazil. Anais da Academia Brasileira de Ciências 88, 21432166.CrossRefGoogle ScholarPubMed
Lopes, R.P., Dillenburg, S.R., Schultz, C.L., Ferigolo, J., Ribeiro, A.M., Pereira, J.C., Holanda, E.Z., Pitana, V.G., Kerber, L., 2014. The sea-level highstand correlated to marine isotope stage (MIS) 7 in the coastal plain of the state of Rio Grande do Sul, Brazil. Anais da Academia Brasileira de Ciências 86, 15731595.CrossRefGoogle Scholar
Lopes, R.P., Pereira, J.C., 2019. Molluskan grazing traces (ichnogenus Radulichnus Voigt, 1977) on a Pleistocene bivalve from Southern Brazil, with the proposal of a new ichnospecies. Ichnos 26, 141157.CrossRefGoogle Scholar
Lopes, R.P., Pereira, J.C., Kinoshita, A., Mollemberg, M., Barbosa, F. Jr., Baffa, O., 2020. Geological and taphonomic significance of electron spin resonance (ESR) ages of Middle–Late Pleistocene marine shells from barrier-lagoon systems of Southern Brazil. Journal of South American Earth Sciences 101, 102605. https://doi.org/10.1016/j.jsames.2020.102605.CrossRefGoogle Scholar
Lopes, R.P., Ribeiro, A.M., Dillenburg, S.R., Schultz, C.L., 2013. Late Middle to Late Pleistocene paleoecology and paleoenvironments in the coastal plain of Rio Grande do Sul state, Southern Brazil, from stable isotopes in fossils of Toxodon and Stegomastodon. Palaeogeography, Palaeoclimatology, Palaeoecology 369, 385394.CrossRefGoogle Scholar
Marques, M.C., Silva, S.M., Liebsch, D., 2015. Coastal plain forests in southern and southeastern Brazil: ecological drivers, floristic patterns, and conservation status. Brazilian Journal of Botany 38, 118.CrossRefGoogle Scholar
Michener, C.D., 2007. The Bees of the World. John Hopkins University Press, Baltimore, MD, 953 pp.CrossRefGoogle Scholar
Muhs, D.R., Budahn, J., Avila, A., Skipp, G., Freeman, J., Patterson, D., 2010. The role of African dust in the formation of Quaternary soils on Mallorca, Spain and implications for the genesis of red Mediterranean soils. Quaternary Science Reviews 29, 25182543.CrossRefGoogle Scholar
Netto, R.G., Curran, H. A., Belaustegui, Z., Tognoli, F.M.W., 2017. Solving a cold case: new occurrences reinforce juvenile callianassids as the Ophiomorpha puerilis tracemakers. Palaeogeography, Palaeoclimatology, Palaeoecology 475, 93105.CrossRefGoogle Scholar
Netto, R.G., Tognoli, F.M.W., Gibert, J.M., Oliveira, M.Z., 2007. Paleosol evolution in nearshore fluviatile Pleistocene deposits of the Chuí Formation, south of Brazil. 5ª Reunión Argentina de Icnología y 3r Reunión de Icnología del Mercosur, Ushuaia, Resúmenes, p. 55.Google Scholar
Oliveira, E.V., 1999. Quaternary vertebrates and climates of southern Brazil. In: Rabassa, J., Salemme, M. (Eds.), Quaternary of South America and Antarctic Peninsula. Balkema, Rotterdam, 12, 6173.Google Scholar
Parise, C.K., Calliari, L.J., Krusche, N., 2009. Extreme storm surges in the south of Brazil: atmospheric conditions and shore erosion. Brazilian Journal of Oceanography 57, 175188.CrossRefGoogle Scholar
Peltier, W.R., Fairbanks, R.G., 2006. Global glacial ice volume and last glacial maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, 33223337.CrossRefGoogle Scholar
Ramos, K.S., Netto, R.G., Sedorko, D., 2021. Termite nests in eolian backshore settings: an unusual record throughout the Quaternary in the Neotropical realm. Palaeontologia Electronica 24, a15. https://doi.org/10.26879/1146.Google Scholar
Retallack, G.J., 2001. Soils of the Past. An Introduction to Paleopedology. Blackwell, Oxford, 552 pp.CrossRefGoogle Scholar
Rodrigues, F.C.G., Giannini, P.C.F., Fornari, M., Sawakuchi, A.O., 2020. Deglacial climate and relative sea level changes forced the shift from eolian sandsheets to dunefields in southern Brazilian coast. Geomorphology 365, 107252. https://doi.org/10.1016/j.geomorph.2020.107252.CrossRefGoogle Scholar
Rosa, M.L.C.C., Barboza, E.G., Abreu, V.S., Tomazelli, L.J., Dillenburg, S.R., 2017. High-frequency sequences in the Quaternary of Pelotas Basin (coastal plain): a record of degradational stacking as a function of longer-term base-level fall. Brazilian Journal of Geology 47, 183207.CrossRefGoogle Scholar
Rosa, M.L.C.C., Barboza, E.G., Dillenburg, S.R., Tomazelli, L.J., Ayup-Zouain, R.N., 2011. The Rio Grande do Sul (Brazil) shoreline behavior during the Quaternary: a chronostratigraphic analysis. Journal of Coastal Research, Special Issue 64, 686690.Google Scholar
Roulston, T.H., Goodell, K., 2011. The role of resources and risks in regulating wild bee populations. Annual Review of Entomology 56, 293312.CrossRefGoogle ScholarPubMed
Sánchez, M.V., Bellosi, E.S., Genise, J.F., Kramarz, A., Sarzetti, L.C., 2021. An assemblage of large-sized insect traces in paleosols from the Middle Miocene of northern Patagonia related to the climatic optimum. Journal of South American Earth Sciences 109, 103249. https://doi.org/10.1016/j.jsames.2021.103249.CrossRefGoogle Scholar
Santos, N.B., Lavina, E.L.C., Paim, P.S.G., Tatumic, S.H., Yeec, M., Santos, V.O., Kern, H.P., 2022. Relative sea level and wave energy changes recorded in a micro-tidal barrier in southern Brazil. Quaternary Research. https://doi.org/10.1017/qua.2022.23.CrossRefGoogle Scholar
Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., Broderson, W.D., 2001. Field Book for Describing and Sampling Soils. USDA-NRCS, National Soil Survey Center, Books Express Publishing, 298 pp.Google Scholar
Stephen, W.P., Bohart, G.E., Torchio, P.F., 1969. The Biology and External Morphology of Bees, with a Synopsis of the Genera of Northwestern America. Agricultural Experimental Station, Oregon State University, Corvallis, Oregon, 140 pp.Google Scholar
Suguio, K., Martin, L., 1978. Quaternary Marine Formations of the States of São Paulo and Southern Rio de Janeiro. International Symposium on Coastal Evolution in the Quaternary, IGCP Project 61, Special Publication 1, São Paulo, 55 pp.Google Scholar
Tomazelli, L.J., 1985. Contribuição ao conhecimento das fácies de ambiente praial a partir de elementos do Pleistoceno Costeiro do Rio Grande do Sul. Anais, 2nd Simpósio Sul-Brasileiro de Geologia, 28, Florianópolis, Sociedade Brasileira de Geologia, pp. 325338.Google Scholar
Tomazelli, L.J., Dillenburg, S.R., 2007. Sedimentary facies and stratigraphy of a last interglacial coastal barrier in south Brazil. Marine Geology, 244: 33-45.CrossRefGoogle Scholar
Tomazelli, L.J., Dillenburg, S.R., Villwock, J.A., 2000. Late Quaternary geological history of Rio Grande do Sul Coastal Plain, southern Brazil. Revista Brasileira de Geociências 30, 474476.CrossRefGoogle Scholar
Tomazelli, L.J., Villwock, J.A., 2000. O Cenozóico no Rio Grande do Sul: Geologia da Planície Costeira. In: Holz, M., De Ros, L.F. (Eds.), Geologia do Rio Grande do Sul. Edição CIGO/ UFRGS, Porto Alegre, pp. 375406.Google Scholar
Tschinkel, W.R., 2010. The foraging tunnel system of the Namibian Desert termite, Baucaliotermes hainesi. Journal of Insect Science 10, 65. https://doi.org/10.1673/031.010.6501.CrossRefGoogle ScholarPubMed
Villwock, J.A., Tomazelli, L.J., 1995. Geologia Costeira do RS. Notas Técnicas 8, 145.Google Scholar
Villwock, J.A., Tomazelli, L.J., Loss, E.L., Dehnhardt, E.A., Horn, N.O., Bachi, F.A., Dehnhardt, B.A., 1986. Geology of the Rio Grande do Sul Coastal Province. In: Rabassa, J. (Ed.), Quaternary of South America and Antarctic Peninsula. A.A. Balkema, Rotterdam, pp. 7997.Google Scholar
Supplementary material: File

Ramos et al. supplementary material

Ramos et al. supplementary material

Download Ramos et al. supplementary material(File)
File 18.4 KB