Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-05T05:29:46.680Z Has data issue: false hasContentIssue false

Holocene Environmental Change and River-Mouth Sedimentation in the Baie des Anges, French Riviera

Published online by Cambridge University Press:  20 January 2017

Michel Dubar
Affiliation:
Laboratoire de Sédimentologie, CNRS, Rue Albert Einstein, Bâtiment 1, F-06565 Valbonne Cédex, France
Edward J. Anthony
Affiliation:
Département de Géographie, URA 1476 CNRS, Université de Nice-Sophia Antipolis, 98 Boulevard Edouard Herriot, B.P. 209, F-06204 Nice Cédex 3, France

Abstract

River mouths on the steep, high-relief coast of the French Riviera exhibit thick sequences of Holocene marine, estuarine, deltaic, and river channel-floodplain sediments that overlie basal fluvial Pleistocene gravel. Gravel is uncommon in most of the early to middle Holocene aggradational-progradational marine, estuarine, deltaic sediments, despite an ample supply from rock units in the steep adjoining uplands. River-mouth gravel is common only in late Holocene river channels and in barrier beaches perched on finer-grained nearshore sediments. Neither downslope grain-size fining on alluvial fans nor sediment stacking patterns during sea-level (base-level) rise readily account for the lack of early to middle Holocene gravel in the river-mouth sediment wedges. Holocene sea-level rise led to the storage of fine-grained sediments in shallow marine, estuarine, and deltaic environments in the present coastal zone. We infer that humid temperate conditions, a dense forest cover, landscape stabilization, and a regular quiescent river flow regime associated with the Atlantic climatic optimum limited gravel supply in the adjoining catchments and gravel entrainment downstream during the early Holocene. Sea-level stabilization in the middle and late Holocene coincided with a marked change in bioclimatic conditions toward the present Mediterranean-type regime, which is characterized by a less dense forest cover, soil erosion, and episodic catastrophic floods. The late Holocene was thus a time of downstream bedload channel aggradation, fine-grained floodplain and paludal sedimentation, and seaward flushing of clasts leading to the formation and consolidation of the gravel barrier beaches that bound the rivermouths and embayments.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aloisi, J. Monaco, A. Planchais, N. Thommeret, J., and Thommeret, Y., 1978. The Holocene transgression in the Golfe du Lion, southwestern France: paleogeographic and paleobotanical evolution. G4ographie Physique Quaternaire 32, 145163.Google Scholar
Anthony, E. J., 1993. Preliminary investigations of gravel barrier development in the Baie des Anges, French Riviera. In Proceedings of the International Coastal Congress, Kiel, pp. 4857. Peter Lang, Frankfurt.Google Scholar
Anthony, E. J. Jagoudet, P., and Perez, S., 1994. Gravel beach stabilization measures in the Baie des Anges, Cdte d’Azur, France. Cahiers Nantais, 41-42, 145152.Google Scholar
Bellaiche, G. Vergnaud-Grazzini, C., and Glangeaud, L., 1969. Les episodes de la transgression flandrienne dans le golfe de Fr£jus. Comptes-Rendus de I’Academie des Sciences de Paris 268, 27652770.Google Scholar
Berger, A., 1992. “Le Climat de la Terre—Un passg pour quel avenir?” De Boeck University, Brussels.Google Scholar
Binder, D., 1990. Probtemes relatifs & la chronologie de l’Epipalolithique et du Niolithique dans les Alpes-Maritimes. Bulletin d’Etudes Prdhistoriques et Archdologiques Alpines Volume Special, 5dme Colloque d’ArcWologie, Aoste, pp. 2738.Google Scholar
Blum, M. D., 1990. Climatic and eustatic controls on Gulf Coastal Plain Fluvial sedimentation: An example from the Late Quaternary of the Colorado River, Texas. In “Sequence Stratigraphy as an Exploratory Tool: Concepts and Practices in the Gulf Coast” (Armentrout, J. M., Ed.), pp. 7183. Proceedings of the 1990 Research Conference, Gulf Coast Section of the Society of Economic Paleontologists and Mineralogists. Google Scholar
Blum, M. D., 1994. Genesis and architecture of incised valley fill sequences, a late Quaternary example from the Colorado River, Gulf Coastal Plain of Texas. In “Siliciclastic sequence Stratigraphy— Recent Developments and Applications” (Weimer, P. and Posamentier, H. W., Eds.), pp. 259283. AAPM Memoir 58.Google Scholar
Blum, M. D., and Valastro, S. Jr., 1994. Late Quaternary sedimentation, lower Colorado River, Gulf Coastal Plain of Texas. Geological Society of America Bulletin 106, 10021016.Google Scholar
Bravard, J. P., 1992. Les rythmes devolution morphologique des valines frangaises au Tardiglaciaire et k 1’Holocene. Rapport 2. Bulletin de VAssociation des Geographes Frangais, 3, 207226.CrossRefGoogle Scholar
Bridge, J. S., 1984. Large scale facies sequences in alluvial overbank environments. Journal of Sedimentary Petrolology 54, 583588.Google Scholar
Carter, R. W. G. Forbes, D. L. Jennings, S. C. Orford, J. D. Shaw, J., and Taylor, R. B., 1989. Barrier and lagoon coast evolution under differing sea-level regimes: examples from Ireland and Nova Scotia. Marine Geology 88, 221242.CrossRefGoogle Scholar
Collinson, J. D., 1986. Alluvial sediments. In “Sedimentary Environments and Facies” (Reading, H. G., Ed.), pp. 2062. Blackwell, Oxford.Google Scholar
Dairymple, R. W. Zaitlin, B. A., and Boyd, R., 1992. Estuarine facies models: conceptual basis and stratigraphic implications. Journal of Sedimentary Petrology 62, 11301146.Google Scholar
Damblon, F. Dubar, M. Nicol-Pichard, S., and Vemet, J. L., 1988. Pal6o6cologie du pays niois k la fin de la Priode atlantique. Institut Frangais de Pondichery, Section Sciences Techniques 25, 1125.Google Scholar
de, Beaulieu, J. L., 1977. “Contribution pollenanalytique a l’histoire tardiglaciaire et holoc£ne de la vegetation des Alpes Maritimes franchises.” Unpublished Thesis, Doctorat d’Etat, University d’Aix-Marseille.Google Scholar
Dubar, M., 1987. Donnies nouvelles sur la transgression holoc£ne dans la region de Nice (France). Bulletin de la Societe Geologique de France 8, 195198.Google Scholar
Dubar, M., 1988. La s6rie transgressive cotifcre holocdne de la region de Nice, un module sedimentaire. Bulletin de V Association Franca is e pour I’Etude du Quaternaire 1, 1115.Google Scholar
Dubar, M. Damblon, F. Nicol-Pichard, S. Vemet, J. L. Chaix, L. Cataliotti, J. Irr, F., and Babinot, J. F., 1986. L’environnement cotier des Alpes-Maritimes a la fin de la transgression versilienne d’aprtis l’e6tude biostratigraphique du site de l’Etoile a Nice (France). Revue de Paleobiologie 5, 289310.Google Scholar
Dubar, M. Guglielmi, Y., and Falguferes, C., 1992. N6otectonique et sedimentation cottere quatemaires en bordure de 1’Arc Subalpin de Nice (A. M., France). Quaternaire 3, 105110.Google Scholar
Elliot, J. D., 1986. Deltas. In “Sedimentary Environments and Facies” (Reading, H. G., Ed.), pp. 113154. Blackwell, Oxford.Google Scholar
Gennesseaux, M., 1962. Les canyons de la Baie des Anges, leur remplissage sedimentaire, leur r61e dans la sedimentation profonde. Comptes-Rendus de /’Acadtmie des Sciences de Paris 254, 24092411.Google Scholar
Gennesseaux, M., and Thommeret, , 1968. Datation par le radiocarbone de quelques sediments sous-marins de la region nioise. Revue de Geographie physique et de geologie dynamique 10, 375382.Google Scholar
Graf, J. B. Webb, R. H., and Hereford, R., 1991. Relation of sediment load and floodplain formation to climatic variability. Parai River drainage basin, Utah and Arizona. Geological Society of America Bulletin 103, 14051415.Google Scholar
Guglielmi, Y., and Dubar, M., 1993. Analyse morphostructurale du Bassin plio-quatemaire du Var (Alpes-Maritimes, France) et confrontation avec les donnes de la neotectonique. Bulletin de I’Institut Geologique du Bassin d’Aquitaine 53, 7783.Google Scholar
Haddad, N., 1980. “Etude geophysique par sondages eiectriques. Donnies hydrogologiques dans la basse valiee de la Brague (Alpes Maritimes, France).” Unpublished Thesis, Doctorat de 3£me Cycle, University de Nice.Google Scholar
Jorda, M., 1980. Morphogenfcse et 6 volution des pay sages dans les Alpes de Haute-Provence depuis le tardiglaciaire: Facteurs naturels et anlhropiques. Bulletin de [‘Association des Giographes Frunouts 472, 295304.Google Scholar
Julian, M., 1980. “Les Alpes-Maritimes Franco-Italiennes—Etude Geomorphologique.” Atelier Reproduction des These, Lille.Google Scholar
Julian, M., and Anthony, E. J., 1993. Landslides and climatic variables, with specific reference to the Maritime Alps of southwestern France. In “Temporal Occurrence and Forecasting of Landslides in the European Community—Final Report” (Brunsden, D., Ed.), pp. 697721, European Community Programme Epoch Contract 90 0025, Strasbourg.Google Scholar
Julian, M., and Anthony, E. J., in press. Aspects of landslide activity in the Mercantour Massif and the French Riviera, southeastern France. Geomorphology. Google Scholar
Koss, J. E. Ethridge, F. G., and Schumm, S. A., 1994. An experimental study of the effects of base-level change on fluvial, coastal plain and shelf systems. Journal of Sedimentary Research B 64, 9098.Google Scholar
Leopold, L. B., and Bull, B. W., 1979. Base level, aggradation and grade. American Philosophical Society Proceedings 123, 168202.Google Scholar
Leopold, L. B., and Wolman, M. G., 1957. River channel patterns: Braided, meandering and straight. U. S. Geological Survey Professional Paper 282B.Google Scholar
L’Homer, A., 1980. Quaternaire—Precontinent et littoraux. In “Synthdse geologique du sud-est de la France” (Debrand-Passard, S., Ed.), pp. 559561, Memoir BRGM 125.Google Scholar
Mascle, J., and Rehault, J. P., 1991. Le destin de la M6diterran6e. La Recherche 229, 188196.Google Scholar
Miall, A. D., 1991. Stratigraphic sequences and their chronostratigraphic correlation. Journal of Sedimentary Petrology 61, 497505.Google Scholar
Nanson, G., 1986. Episodes of vertical accretion and catastrophic stripping: a model of disequilibrium floodplain development. Geological Society of America Bulletin 97, 14671475.Google Scholar
Nemec, W., 1990a. Deltas—remarks on terminology and classification. In “Coarse-Grained Deltas” (Colella, A. and Prior, D. B., Eds.), pp. 312. IAS Special Publication 10.Google Scholar
Nemec, W., 1990b. Aspects of sediment movement on steep delta slopes. In “Coarse-Grained Deltas” (Colella, A. and Prior, D. B., Eds.), pp. 2973. IAS Special Publication 10.Google Scholar
Nummedal, D. Riley, G. W., and Templet, P. L., 1993. High-resolution sequence architecture: a chronostratigraphic model based on equilibrium profile studies. In “Sequence Stratigraphy and Facies Associations” (Posamentier, H. W. Summerhayes, C. P. Haq, B. U., and Allen, G. P., Eds.), pp. 5568. IAS Special Publication 18.Google Scholar
Orford, J. D. Carter, R. W. G., and Jennings, S. C., 1991. Coarse clastic barrier environments: evolution and implications for Quaternary sea level interpretation. Quaternary International 9, 87104,Google Scholar
Orton, G. J., and Reading, H. G., 1993. Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology 40, 475512.Google Scholar
Patzelt, G., 1974. Holocene variations of glaciers in the Alps. In “Les Mdthodes quantitatives d’Etudes des Variations du Climat au cours du Pleistocene” pp. 5159, International Symposium, CNRS, Gifsur-Yvette.Google Scholar
Pichard, S., in press. Pollen analysis of a 66 meter Tardi-Glacial and Holocene period series, Brague Valley, Biot, Alpes Maritimes, France. Review of Palaeobotany and Palynology. Google Scholar
Pirazzoli, P. A., 1991. “World Atlas of Holocene Sea-Level Changes.” Elsevier Oceanography Series, Vol. 58, Elsevier, Amsterdam.Google Scholar
Pline, C., 1991. “Contribution a l’etude geologique, hydrog£ologique et gdotechnique de la basse plaine alluvialedu Paillon (Alpes Maritimes, France).” Unpublished Thesis, Doctorat, University de Nice.Google Scholar
Posamentier, H. W., and James, D. P., 1993. An overview of sequence stratigraphic concepts: Uses and abuses. In “Sequence Stratigraphy and Facies Associations (Posamentier, H. W. Summerhayes, C. P. Haq, B. U., and Allen, G. P., Eds.), pp. 318. IAS Special Publication 18.Google Scholar
Posamentier, H. W., and Vail, P. R., 1988. Eustatic controls on clastic deposition II—Sequence and systems tract models. In “Sea Level Change—An Integrated Approach” (Wilgus, C. K. Hastings, B. S. St., C. G. Kendall, C. Posamentier, H. W. Ross, C. A. and Van Wagoner, J. C., Eds.), pp. 125154. SEPM Special Publication 42.Google Scholar
Postma, G., 1990. Depositional architecture and facies of river and fan deltas: A synthesis. In “Coarse-Grained Deltas” (Cole 11a, A. and Prior, D, B., Eds.), pp. 1327. IAS Special Publication 10.CrossRefGoogle Scholar
Prior, D. B., and Bornhold, B. D., 1990. The underwater development of Holocene fan deltas. In “Coarse-Grained Deltas” (Colella, A. and Prior, D. B., Eds.), pp. 7590. IAS Special Publication 10.Google Scholar
Reading, H. G., 1986. Facies. In “Sedimentary Environments and Facies” (Reading, H. G, Ed), pp. 419, Blackwell, Oxford.Google Scholar
Sage, L., 1976. “La s6dimentation a l’embouchure d’un fleuve cfitier m£diterran6en: Le Var.” Unpublished Thesis, Doctoral de 36me Cycle, Universit6 de Nice.Google Scholar
Savoye, B., and Piper, D. J. W., 1993. Quaternary sea-level change and sedimentation on the continental shelf and slope of Antibes, French Riviera. Geo-Marine Letters 13, 28.Google Scholar
Schumm, S. A., 1973. Geomorphic thresholds and the complex response of drainage systems. In “Fluvial Geomorphology” (Morisawa, M., Ed.), pp. 299310. Publications in Geomorphology, State University of New York, Binghamton.Google Scholar
Schumm, S. A., 1993. River response to baselevel change: Implications for sequence stratigraphy. Journal of Geology 101, 279294.Google Scholar
Schumm, S. A., and Kahn, H. R., 1972. Experimental study of channel pattern. Geological Society of America Bulletin 83, 17551770.Google Scholar
Starkel, L., 1983. The reflection of hydrologic changes in the fluvial environment of the temperate zone during the last 15,000 years. In“Background to Palaeohydrology” (Gregory, K. J., Ed.), pp. 213235. Wiley, London.Google Scholar
Starkel, L., 1987. The evolution of European rivers—A complex response. In “Palaeohydrology in Practice” (Gregory, K. J. Lewin, J., and Thornes, J. B., Eds.), pp. 333338. Wiley London.Google Scholar
Starkel, L., 1991. Characteristics of the temperate zone and fluvial palaeohydrology. In “Temperate Palaeohydrology” (Starkel, L. Gregory, K. J., and Thornes, J. B, Eds.), pp. 312. Wiley, London.Google Scholar
Th6venin, J., 1981. “Le fleuve Var en aval de Plan du Var et les nappes alluviales.” Direction Departementale de I’Agriculture de Nice.Google Scholar
Walling, D. E., and Webb, B. W., 1983. Patterns of sediment yield. In“Background to Palaeohydrology” (Gregory, K. J., Ed.), pp. 69100. Wiley, London.Google Scholar
Watts, W. A., 1986. Stages of climatic changes from full glacial to Holocene in Northwest Spain, Southern France and Italy: A comparison of the Atlantic coast and the Mediterranean Basin. In “Current Issues in Climate Research” (Ghazi, A. and Fantechi, R., Eds.), pp. 101112. Reidel, Dordrecht,Google Scholar
Wright, V. P., and Marriott, S. B., 1993. The sequence stratigraphy of fluvial depositional systems: The role of floodplain sediment storage. Sedimentary Geology 86, 203210.Google Scholar