Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-01T01:05:16.271Z Has data issue: false hasContentIssue false

East Asian monsoon variations in the loess–desert transitional zone (northern China) during the past 14 ka and their comparison with TraCE21K simulation results

Published online by Cambridge University Press:  08 February 2024

Yao Gu
Affiliation:
School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
Huayu Lu*
Affiliation:
School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
Jingjing Wang
Affiliation:
School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
Hongyan Zhang
Affiliation:
School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
Wenchao Zhang
Affiliation:
School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
Chenghong Liang
Affiliation:
School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
Jiang Wu
Affiliation:
School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China School of Geography, Nanjing Normal University, Nanjing 210023, China
*
Corresponding author: Huayu Lu; Email: huayulu@nju.edu.cn

Abstract

The Holocene is a critical period for understanding the East Asian monsoon system (EAM) over long timescales, but high-precision dating and high-resolution records from the Holocene epoch at monsoonal margins of East Asia are lacking. Here, on the basis of closely spaced radiocarbon and optically stimulated luminescence dating results obtained from a typical loess–paleosol sequence on the northern Chinese Loess Plateau (CLP), we provide an independent age-based, high-resolution depositional record of East Asian summer (EASM) and winter monsoons (EAWM) variations over the past ~14 ka. We find that both the EASM and EAWM simultaneously strengthened sometime during the Holocene optimum (~7–5 ka BP), with greater seasonality, and weakened during the Late Holocene. These findings are counterintuitive to our understanding of the EAM variations based on loess records at suborbital scales during interglacial periods, providing an alternative scenario of the monsoon system evolution. We postulate that high-latitude forcing and surface feedbacks, such as vegetation change, have modulated the EAM variations during the Holocene warmth.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

An, Z.S., 2000. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, 171187.CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6, 457474.CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., 2001. Persistent solar influence on north Atlantic climate during the Holocene. Science 294, 21302136.CrossRefGoogle ScholarPubMed
Bova, S., Rosenthal, Y., Liu, Z., Godad, S.P., Yan, M., 2021. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548553.CrossRefGoogle ScholarPubMed
Cai, Y., Cheng, X., Ma, L., Mao, R., Breitenbach, S.F.M., Zhang, H., Xue, G., Cheng, H., Edwards, R.L., An, Z.S., 2021. Holocene variability of East Asian summer monsoon as viewed from the speleothem δ18O records in central China. Earth and Planetary Science Letters 558, 116758.CrossRefGoogle Scholar
Chen, F., Xu, Q., Chen, J., Birks, H.J., Liu, J., Zhang, S., Jin, L., et al., 2015. East Asian summer monsoon precipitation variability since the last deglaciation. Scientific Reports 5, 11186.CrossRefGoogle ScholarPubMed
Ding, Z.L., Derbyshire, E., Yang, S. L., Sun, J.M., Liu, T.S., 2005. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth and Planetary Science Letters 237, 4555.CrossRefGoogle Scholar
Gong, X.J., Wang, P., Yang, Z.J., Dong, Q. Y., Song, C., Guo, J., Chen, H.Y., 2021. Climate change recorded by the grain size end menber since MIS 3 in Jingbian area. Bulletin of Geological Science and Tecnology 40, 184191.Google Scholar
Hajdas, I., 2008. Radiocarbon dating and its applications in Quaternary studies. E&G Quaternary Science Journal 57, 224.Google Scholar
He, C., Liu, Z., Otto-Bliesner, B.L., Brady, E.C., Zhu, C., Tomas, R., Clark, P., et al., 2021. Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation. Science Advances 7. http://dx.doi.org/10.1126/sciadv.abe2611.CrossRefGoogle ScholarPubMed
He, F., Clark, P.U., 2022. Freshwater forcing of the Atlantic Meridional Overturning Circulation revisited. Nature Climate Change 12, 449454.CrossRefGoogle Scholar
Hua, Q., Barbetti, M., Rakowski, A.Z., 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55, 20592072.CrossRefGoogle Scholar
Jia, G.D., Bai, Y., Yang, X.Q., Xie, L.H., Wei, G.J., Ouyang, T.P., Chu, G.Q., Liu, Z.H., Peng, P.A., 2015. Biogeochemical evidence of Holocene East Asian summer and winter monsoon variability from a tropical maar lake in southern China. Quaternary Science Reviews 111, 5161.CrossRefGoogle Scholar
Jiang, W., Cheng, Y., Yang, X., Yang, S., Wan, S., 2013. Chinese Loess Plateau vegetation since the Last Glacial Maximum and its implications for vegetation restoration. Journal of Applied Ecology 50, 440448.CrossRefGoogle Scholar
Kaboth-Bahr, S., Bahr, A., Zeeden, C., Yamoah, K.A., Lone, M.A., Chuang, C.-K., Lowemark, L., Wei, K.Y., 2021. A tale of shifting relations: East Asian summer and winter monsoon variability during the Holocene. Scientific Reports 11, 110.CrossRefGoogle Scholar
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.K., Hnilo, J.J., Fiorino, M., Potter, G.L., 2002. NCEP-DOE AMIP-II reanalysis (R-2). Bulletin of the American Meteorological Society 83, 16311643.CrossRefGoogle Scholar
Kang, S., Du, J., Wang, N., Dong, J., Song, Y., 2020. Early Holocene weakening and mid- to late Holocene strengthening of the East Asian winter monsoon. Geology 48, 10431047.CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428, 261285.CrossRefGoogle Scholar
Li, J.J., Feng, Z.D., Tang, L.Y., 1988. Late Quaternary monsoon patterns on the loess plateau of China. Earth Surface Processes and Landforms 13, 125135.Google Scholar
Liang, C.H., Lu, H., Gu, Y., Zhao, C., Liu, W., Zhang, X., Zhang, H., 2022. Asynchronous variations of East Asian summer monsoon, vegetation and soil formation at Yulin (north China) in the Holocene. Journal of Quaternary Science 37 10831090.CrossRefGoogle Scholar
Liu, Z., Otto-Bliesner, B.L., He, F., Brady, E.C., Tomas, R., Clark, P.U., Carlson, A.E., et al., 2009. Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod warming. Science 325, 310314.CrossRefGoogle ScholarPubMed
Ljungqvist, F.C., Krusic, P.J., Sundqvist, H.S., Zorita, E., Brattstrom, G., Frank, D., 2016. Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature 532, 9498.CrossRefGoogle ScholarPubMed
Lu, H.Y., Sun, D.H., 2000. Pathways of dust input to the Chinese Loess Plateau during the last glacial and interglacial periods. Catena 40, 251261.CrossRefGoogle Scholar
Lu, H.Y., Miao, X.D., Zhou, Y.L., Mason, J., Swinehart, J., Zhang, J.F., Zhou, L.P., Yi, S.W., 2005. Late Quaternary aeolian activity in the Mu Us and Otindag dune fields (north China) and lagged response to insolation forcing. Geophysical Research Letters 32. http://dx.doi.org/10.1029/2005GL024560.CrossRefGoogle Scholar
Lu, H.Y., Mason, J.A., Stevens, T., Zhou, Y.L., Yi, S.W., Miao, X.D., 2011. Response of surface processes to climatic change in the dunefields and Loess Plateau of north China during the late Quaternary. Earth Surface Processes and Landforms 36, 15901603.CrossRefGoogle Scholar
Lu, H.Y., Yi, S.W., Liu, Z.Y., Mason, J.A., Jiang, D.B., Cheng, J., Stevens, T., et al., 2013a. Variation of East Asian monsoon precipitation during the past 21 k.y. and potential CO2 forcing. Geology 41, 10231026.Google Scholar
Lu, H.Y., Yi, S.W., Xu, Z.W., Zhou, Y.L., Zeng, L., Zhu, F. Y., Feng, H., et al., 2013b. Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum. Chinese Science Bulletin 58, 27752783.CrossRefGoogle Scholar
Lu, H.Y., Wang, X., Wang, Y., Zhang, X., Markovi, S.B., 2022. Chinese loess and the Asian monsoon: what we know and what remains unknown. Quaternary International 620, 8597.CrossRefGoogle Scholar
Mason, J.A., Nater, E.A., Zanner, C.W., Bell, J.C., 1999. A new model of topographic effects on the distribution of loess. Geomorphology 28, 223236.CrossRefGoogle Scholar
Menviel, L.C., Skinner, L.C., Tarasov, L., Tzedakis, P. C., 2020. An ice–climate oscillatory framework for Dansgaard–Oeschger cycles. Nature Reviews Earth & Environment 1, 677693.CrossRefGoogle Scholar
Otto-Bliesner, B.L., Russell, J.M., Clark, P.U., Liu, Z.Y., Overpeck, J.T., Konecky, B., deMenocal, P., Nicholson, S.E., He, F., Lu, Z.Y., 2014. Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 346, 12231227.CrossRefGoogle ScholarPubMed
Porter, S.C., An, Z.S., 1995. Correlation between climate events in the North-Atlantic and China during Last Glaciation. Nature 375, 305308.CrossRefGoogle Scholar
Porter, S.C., Zhou, W.J., 2006. Synchronism of Holocene East Asian monsoon variations and North Atlantic drift-ice tracers. Quaternary Research 65, 443449.CrossRefGoogle Scholar
Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14, 653667.CrossRefGoogle Scholar
Ramsey, C.B., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, C.B., Butzin, M., et al., 2020. The Intcal20 Northern Hemisphere radicoarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725757.CrossRefGoogle Scholar
Routson, C.C., Mckay, N.P., Kaufman, D.S., Erb, M.P., Goosse, H., Shuman, B.N., Rodysill, J.R., Ault, T., 2019. Mid-latitude net precipitation decreased with Arctic warming during the Holocene. Nature 568, 8387.CrossRefGoogle ScholarPubMed
Steinke, S., Glatz, C., Mohtadi, M., Groeneveld, J., Li, Q.Y., Jian, Z.M., 2011. Past dynamics of the East Asian monsoon: no inverse behaviour between the summer and winter monsoon during the Holocene. Global Planet Change 78, 170177.CrossRefGoogle Scholar
Sun, W.Y., Liu, J., Wan, L.F., Ning, L., Yan, M., 2020. Simulation of northern hemisphere mid-latitude precipitation response to different external forcings during the Holocene. Quaternary Sciences 40, 15881596.Google Scholar
Synal, H. A., Stocker, M., Suter, M., 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259, 713.CrossRefGoogle Scholar
Ujvari, G., Kok, J.F., Varga, G., Kovacs, J., 2016. The physics of wind-blown loess: implications for grain size proxy interpretations in Quaternary paleoclimate studies. Earth-Science Reviews 154, 247278.CrossRefGoogle Scholar
Ujvari, G., Stevens, T., Molnar, M., Demeny, A., Lambert, F., Varga, G., Jull, A.J.T., Pall-Gergely, B., Buylaert, J.P., Kovacs, J., 2017. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proceedings of the National Academy of Sciences USA 114, E10632–E10638.CrossRefGoogle ScholarPubMed
Walczak, M.H., Mix, A.C., Cowan, E.A., Fallon, S., Fifield, L.K., Alder, J.R., Du, J.H., et al., 2020. Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans. Science 370, 716720.CrossRefGoogle ScholarPubMed
Wang, B., Biasutti, M., Byrne, M.P., Castro, C., Chang, C.-P., Cook, K., Fu, R., et al., 2021. Monsoons climate change assessment. Bulletin of the American Meteorological Society 102, E1E19.CrossRefGoogle Scholar
Wang, F., Si, Y., Li, B., Niu, D., Li, Z., Wen, X., Yang, Z., 2022. Variations in the aeolian sequence Zr/Rb ratios in the Mu Us Desert during the Holocene and their implications for the East Asian monsoon. Aeolian Research 54, 100753.CrossRefGoogle Scholar
Wang, H.L., Lu, H.Y., Zhang, H.Y., Yi, S.W., Gu, Y., Liang, C.H., 2019. Grass habitat analysis and phytolith-based quantitative reconstruction of Asian monsoon climate change in the sand-loess transitional zone, northern China. Quaternary Research 92, 519529.CrossRefGoogle Scholar
Wang, J.J., Lu, H.Y., Cheng, J., Zhao, C., 2023. Global terrestrial monsoon area variations since Last Glacial Maximum based on TraCE21ka and PMIP4-CMIP6 simulations. Global and Planetary Change 231, 104308.CrossRefGoogle Scholar
Wang, L., Li, J.J., Lu, H.Y., Gu, Z.Y., Rioual, P., Hao, Q.Z., Mackay, A.W., et al., 2012. The East Asian winter monsoon over the last 15,000 years: its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon. Quaternary Science Reviews 32, 131142.CrossRefGoogle Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.S., Wu, J.Y., Kelly, M.J., Dykoski, C.A., Li, X.D., 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854857.CrossRefGoogle ScholarPubMed
Wen, X.H., Li, B.S., Zheng, Y.M., Yang, Q.J., Niu, D.F., Shu, P.X., 2016. Early Holocene multi-centennial moisture change reconstructed from lithology, grain-size and chemical composition data in the eastern Mu Us desert and potential driving forces. Palaeogeography, Palaeoclimatology, Palaeoecology 459, 440452.CrossRefGoogle Scholar
Wen, X.Y., Liu, Z.Y., Wang, S.W., Cheng, J., Zhu, J., 2016. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years. Nature Communications 7. http://dx.doi.org/10.1038/ncomms11999.CrossRefGoogle Scholar
Wu, J., Lu, H.Y., Yi, S.W., Xu, Z.W., Gu, Y., Liang, C.H., Cui, M.C., Sun, X.F., 2019. Establishing a high-resolution luminescence chronology for the Zhenbeitai sand-loess section at Yulin, north-central China. Quaternary Geochronology 49, 7884.CrossRefGoogle Scholar
Xu, Z. W., Mason, J.A., Xu, C., Yi, S.W., Bathiany, S., Yizhaq, H., Zhou, Y.L., Cheng, J., Holmgren, M., Lu, H.Y., 2020. Critical transitions in Chinese dunes during the past 12,000 years. Science Advances 6. http://dx.doi.org/10.1126/sciadv.aay8020.Google ScholarPubMed
Yang, S.L., Ding, Z.L., 2008. Advance-retreat history of the East-Asian summer monsoon rainfall belt over northern China during the last two glacial-interglacial cycles. Earth and Planetary Science Letters 274, 499510.CrossRefGoogle Scholar
Yang, S.L., Ding, Z.L., Li, Y.Y., Wang, X., Jiang, W.Y., Huang, X.F., 2015. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proceedings of the National Academy of Sciences USA 112(43), 1317813183.CrossRefGoogle Scholar
Zhang, W.C., Wu, H.B., Cheng, J., Geng, J.Y., Li, Q., Sun, Y., Yu, Y.Y., Lu, H.Y., Guo, Z.T., 2022. Holocene seasonal temperature evolution and spatial variability over the Northern Hemisphere landmass. Nature Communications 13. http://dx.doi.org/10.1038/s41467-022-33107-0.Google ScholarPubMed
Zhang, X., Barker, S., Knorr, G., Lohmann, G., Drysdale, R., Sun, Y., Hodell, D., Chen, F.H., 2021. Direct astronomical influence on abrupt climate variability. Nature Geoscience 14, 819826.CrossRefGoogle Scholar
Supplementary material: File

Gu et al. supplementary material

Gu et al. supplementary material
Download Gu et al. supplementary material(File)
File 2.3 MB