Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-16T09:29:02.012Z Has data issue: false hasContentIssue false

Rock Glaciers and Block fields, Review and new data

Published online by Cambridge University Press:  20 January 2017

Sidney E. White*
Affiliation:
Department of Geology and Mineralogy, Ohio State University, 125 South Oval Drive, Columbus, Ohio 43210 USA

Abstract

Tongue-shaped and lobate rock glaciers are recognized in most alpine regions today. For the tongue-shaped, two situations emerge: those with buried glacier ice (debris-covered glaciers) called ice-cored rock glaciers, and those with interstitial ice known as ice-cemented rock glaciers. Those with ice cores are revealed by depressions between rock glacier and headwall cliff (where a former glacier melted), longitudinal marginal and central meandering furrows, and collapse pits. Ice-cemented rock glaciers ordinarily do not possess these features. As applied to 18 rock glaciers in the Colorado Front Range, 11 of 12 east of the Continental Divide are ice-cored, 6 west of the Divide are ice-cemented. The majority of lobate rock glaciers in the Colorado Front Range are on the south sides of valleys, and, except for talus, are the most voluminous form of mass wasting. All those active and above treeline have characteristics common to all rock glaciers. In addition, they originate from talus, contain interstitial ice, move outward from valley walls at 1–6 cm/yr, and transport more debris as a process of erosion than heretofore realized. Block fields and block slopes, in polar and alpine regions, are thin accumulations of angular to subrounded blocks, on bedrock, weathered rock, or transported debris. They extend along slopes parallel to the contour. Block streams are similar but extend downslope normal to the contour and into valleys. They are made of interlocked blocks without interstitial detritus, but many have finer material deeper inside. The fabric of surface blocks indicates that motion most likely occurred during a periglacial time when interstitial debris, now washed or piped out, permitted movement of the whole deposit.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, J.G., (1906). Solifluction, a component of subaërial denudation. Journal of Geology 14, 91112.Google Scholar
Antevs, E., (1932). Alpine Zone of Mt. Washington Range Merrill and Webber Auburn, Maine .Google Scholar
Barsch, D., (1969). Studien und Messungen an Blockgletschern in Macun, Unterengadin. Zeitschrift für Geomorphologie Supplementband 8, 1130.Google Scholar
Barsch, D., (1971). Rock glaciers and ice-cored moraines. Geografiska Annaler 53A, 203206.Google Scholar
Barsch, D., Updike, R.G., (1971a). Periglaziale Formung am Kendrick Peak in Nord-Arizona während der letzten Kaltzeit. Geographica Helvetica 3, 99114.Google Scholar
Barsch, D., Updike, R.G., (1971b). Late Pleistocene periglacial geomorphology (rock glaciers and blockfields) at Kendrick Peak, northern Arizona. Arizona Geological Society Digest 9, 225243.Google Scholar
Behre, C.H., (1933). Talus behavior above timber [sic] in the Rocky Mountains. Journal of Geology 41, 622635.CrossRefGoogle Scholar
Benedict, J.B., (1973). Origin of rock glaciers. Journal of Glaciology 12, 520522.Google Scholar
Blagbrough, J.W., Farkas, S.E., (1968). Rock glaciers in the San Mateo Mountains, south-central New Mexico. American Journal of Science 266, 812823.Google Scholar
Bonnett, R.B., (1970). Glacial Sequence of the Upper Boulder Creek Drainage Basin in the Colorado Front Range. Ph.D. dissertation Ohio State University 318.Google Scholar
Brown, W.H., (1925). A probable fossil glacier. Journal of Geology 33, 464466.Google Scholar
Cailleux, A., (1947). Caracteres distinctifs des coulées de blocailles liées au gel intense. Société Géologique de France Compte Rendus 323324.Google Scholar
Caine, N., (1968a). The Blockfields of Northeastern Tasmania Australian National University Canberra 127Research School of Pacific Studies. Department of Geography Publication G/6.Google Scholar
Caine, N., (1968b). The fabric of periglacial blockfield material on Mt. Barrow, Tasmania. Geografiska Annaler 50A, 193206.CrossRefGoogle Scholar
Caine, N., (1972). Air photo analysis of block-field fabrics in Talus Valley, Tasmania. Journal of Sedimentary Petrology 42, 3348.Google Scholar
Caine, N., Jennings, J.N., (1968). Some blockstreams of the Toolong Range, Kosciusko State Park, New South Wales. Journal and Proceedings Royal Society of New South Wales 101, 93103.CrossRefGoogle Scholar
Capps, S.R. Jr., (1910). Rock glaciers in Alaska. Journal of Geology 18, 359375.Google Scholar
Chaix, A., (1919). Coulées de blocs (rock-glaciers, rock-streams) in the Swiss National Park of the lower Engadine. Société Physique et d'Histoire Naturelle de Genève Compte Rendus 36, 1215.Google Scholar
Chaix, A., (1923). Les coulées de blocs du Parc National Suisse d'Engadine (note préliminaire). Le Globe (Organe de la Société de Géographie de Genève; Journal Géographique) 62, 34(Mémoires).Google Scholar
Chelius, C., (1896). Die Bildung der Felsenmeere im Odenwald. Deutsche Geologische Gesellschaft Zeitschrift 48, 644651.Google Scholar
Crawford, R.D., (1913). Geology and oredeposits of Monarch and Tomichi Districts, Colorado. Colorado Geological Survey Bulletin 4, 317.Google Scholar
Cross, W., Howe, E., (1905). Geography and general geology of the quadrangle. U.S. Geological Survey Geologic Atlas of the United States 25Silverton Folio, Colorado, No. 120.Google Scholar
Dahl, R., (1966). Block fields, weathering pits and tor-like forms in the Narvik Mountains, Nordland, Norway. Geografiska Annaler 48A, 5585.Google Scholar
Daly, R.A., (1905). The accordance of summit levels among alpine mountains: The fact and its significance. Journal of Geology 13, 105125.Google Scholar
Denny, C.S., (1951). Pleistocene frost action near the border of the Wisconsin drift in Pennsylvania. Ohio Journal of Science 51, 116125.Google Scholar
Dingwall, P.R., (1973). Rock glaciers in the Canadian Rocky Mountains. Ninth Congress of the International Union for Quaternary Research, Abstracts 8081Christchurch, New Zealand.Google Scholar
Domaradzki, J., (1951). Blockströme in Kanton Graubünden. Ergebnisse der Wissenschaft Untersuchungen der Schweiz. Nationalparks N.S. 3, 173235.Google Scholar
Eschman, D.F., (1955). Glaciation of the Michigan River basin, North Park, Colorado. Journal of Geology 63, 197213.Google Scholar
Flint, R.F., Denny, C.S., (1958). Quaternary Geology of Boulder Mountain, Aquarius Plateau, Utah. U.S. Geological Survey Bulletin 1061-D, 164.Google Scholar
Foster, H.F., Holmes, G.W., (1965). A Large Transitional Rock Glacier in the Johnson Area, Alaska Range. U.S. Geological Survey Professional Paper 525-B, B112B116.Google Scholar
Gerhold, N., (1964). Die Blockgletscher—eine besondere Moränenform?. Ph.D. Dissertation Geographisches Institut der Universität Innsbruck Austria .Google Scholar
Goldthwait, R.P., (1970). Glaciation of the Mt. Washington Area, New Hampshire 12Friends of the Pleistocene 33rd Annual Reunion Guidebook.Google Scholar
Gray, J.T., (1970). Mass Wasting Studies in the Ogilvie and Wernecke Mountains, Central Yukon Territory. Geological Survey of Canada Paper 70-1, 192195(Part A).Google Scholar
Griffiths, T.M., (1958). A theory of rockstream morphology. Association of American Geographers Annals 48, 265266.Google Scholar
Guiter, V., (1972). Une forme montagnarde: le rock glacier. Revue Géographie de Alpine 60, 467487.Google Scholar
Högbom, B., (1914). Über die geologische Bedeutung des Frostes. Upsala University, Geological Institute Bulletin 12, 257390.Google Scholar
Högbom, B., (1926). Beobachtungen aus Nordschweden über den Frost als geologischer Faktor. Upsala University, Geological Institute Bulletin 20, 243279.Google Scholar
Howe, E., (1909). Landslides in the San Juan Mountains, Colorado. U.S. Geological Survey Professional Paper 67, 3140.Google Scholar
Hughes, O.L., (1966). Logan Mountains, Yukon Territory: measurements on a rock glacier. Ice 20, 5.Google Scholar
Ives, R.L., (1940). Rock glaciers in the Colorado Front Range. Geological Society of America Bulletin 51, 12711294.CrossRefGoogle Scholar
Johnson, J.P., (1972). Stop 7: Rock Glacier, one mile north by foot trail from Mile 1061, Alaska Highway. Field Excursion A-11 Guidebook, Quaternary Geology and Geomorphology, Southern and Central Yukon (Northern Canada) 24th International Geological Congress 1718Montreal, Canada.Google Scholar
Johnson, J.P., (1973). Some problems in the study of rock glaciers. Fahey, B.D., Thompson, R.D. 3rd Guelph Symposium on Geomorphology Research in Polar and Alpine Geomorphology 8494Guelph, Canada.Google Scholar
Johnson, R.B., (1967). Rock Streams on Mount Mestas, Sangre de Cristo Mountains, Southern Colorado. U.S. Geological Survey Professional Paper 575-D, D217D220.Google Scholar
Joyce, J.R.F., (1950). Stone runs of the Falkland Islands. Geological Magazine 87, 105115.Google Scholar
Kesseli, J.E., (1941). Rock streams in the Sierra Nevada, California. Geographical Review 31, 203227.CrossRefGoogle Scholar
Lliboutry, L., (1953). Internal moraines and rock glaciers. Journal of Glaciology 2, 296.Google Scholar
Lliboutry, L., (1961). Les glaciers enterres et leur rôle morphologique. Symposium at Helsinki International Association of Scientific Hydrology Publication No. 54 272280Helsinki, Finland.Google Scholar
Løken, O., (1962). On the vertical extent of glaciation in northeastern Labrador-Ungava. Canadian Geographer 6, 106115.Google Scholar
Madole, R.F., (1972). Neoglacial facies in the Colorado Front Range. Arctic and Alpine Research 4, 119130.Google Scholar
Markgren, M., (1962–1963). Detaljmorfologiska studier i fast berg och blockmaterial, Geomorfologisk studie inom Fennoskandia med Skåne, I. och II. Lunds Universitets Geografiska Institution Avhandlinger 43, 96.Google Scholar
Nichols, R.L., (1966). Geomorphology of Antarctica. Antarctic Soils and Soil Forming Processes Tedrow, J.C.F. American Geophysical Union, Antarctic Research Series 8 46.Google Scholar
Outcalt, S.I., Benedict, J.B., (1965). Photo-interpretation of two types of rock glacier in the Colorado Front Range, U.S.A. Journal of Glaciology 5, 849856.Google Scholar
Østrem, G., (1971). Rock glaciers and ice-cored moraines: a reply to D. Barsch. Geografiska Annaler 53A, 207213.Google Scholar
Østrem, G., Arnold, K., (Østrem and Arnold, 1970). Ice-cored moraines in southern British Columbia and Alberta, Canada. Geografiska Annaler 52A, 120128.Google Scholar
Patton, H.B., (1910). Rock streams of Veta Peak, Colorado. Geological Society of America Bulletin 21, 663676.Google Scholar
Peltier, L.C., (1945). Block fields in Pennsylvania. Geological Society of America Bulletin 56, 1190.Google Scholar
Peltier, L.C., (1949). Pleistocene terraces of the Susquehanna River, Pennsylvania. Pennsylvania Geological Survey Bulletin Fourth Series G-23, 158.Google Scholar
Penck, W., (1924). Die Morphologische Analyse Verlag J. Engelgorns Nachforschung Stuttgart, Germany .Google Scholar
Porter, S.C., (1966). Pleistocene Geology of Anaktuvuk Pass, Central Brooks Range, Alaska 100Arctic Institute of North America Technical Paper 18.Google Scholar
Potter, N. Jr., (1972). Ice-cored rock glacier, Galena Creek, northern Absaroka Mountains, Wyoming. Geological Society of America Bulletin 83, 30253058.Google Scholar
Potter, N. Jr., Moss, J.H., (1968). Origin of the Blue Rocks block field and adjacent deposits, Berks County, Pennsylvania. Geological Society of America Bulletin 79, 255262.Google Scholar
Rapp, A., (1960). Recent development of mountain slopes in Kärkevagge and surroundings, northern Scandinavia. Geografiska Annaler 42, 71200.Google Scholar
Rapp, A., (1967). Pleistocene activity and Holocene stability of hillslopes, with examples from Scandinavia and Pennsylvania. L'Evolution des Versants Les Congrès et colloques de l'Université de Liège Université de Liège 229244No. 40.Google Scholar
Ray, L.L., (1940). Glacial chronology of the southern Rocky Mountains. Geological Society of America Bulletin 51, 18511917.Google Scholar
Richmond, G.M., (1952). Comparison of rock glaciers and block streams in the La Sal Mountains, Utah. Geological Society of America Bulletin 63, 12921293.Google Scholar
Richmond, G.M., (1960). Glaciation of the east slope of Rocky Mountain National Park, Colorado. Geological Society of America Bulletin 71, 13711382.Google Scholar
Richmond, G.M., (1962). Quaternary Stratigraphy of the La Sal Mountains, Utah. U.S. Geological Survey Professional Paper 324, 135.Google Scholar
Richmond, G.M., (1964). “Glaciation of Little Cottonwood and Bells Canyons”, Wasatch Mountains, Utah. U.S. Geological Survey Professional Paper 454-D, 41.Google Scholar
Rohn, O., (1900). A reconnaissance of the Chitna River and Skolai Mountains, Alaska. U.S. Geological Survey 21st Annual Report 399440Part 2.Google Scholar
Roots, E.F., (1954). Geology and Mineral Deposits of the Aiken Lake Map-Area, British Columbia. Geological Survey of Canada Memoir 274, 246.Google Scholar
Sharpe, C.F.S., (1938). Landslides and Related Phenomena Columbia University Press New York .Google Scholar
Shroder, J.F., (1973). Movement of boulder deposits, Table Cliffs Plateau, Utah. Geological Society of America Abstracts with Programs 5, 511512.Google Scholar
Siebenthal, C.E., (1907). Notes on glaciation in the Sangre de Cristo Range, Colorado. Journal of Geology 15, 1522.Google Scholar
Smith, H.T.U., (1953). The Hickory Run boulder field, Carbon County, Pennsylvania. American Journal of Science 251, 625642.Google Scholar
Smith, H.T.U., (1968). “Piping” in relation to periglacial boulder concentrations. Biuletyn Peryglacjalny 17, 195204.Google Scholar
Smith, H.T.U., (1973). Photogeologic study of periglacial talus glaciers in northwestern Canada. Geografiska Annaler 55A, 6984.Google Scholar
Smith, H.T.U., Smith, A.P., (1945). Periglacial rock streams in the Blue Ridge area. Geological Society of America Bulletin 56, 1198.Google Scholar
Spencer, A.C., (1900). A peculiar form of talus. Science 11, 188.Google Scholar
Strömquist, L., (1973). Geomorfologiska Studier av Blockhav och Blockfält i Norra Skandinavien 1161Uppsala Universitet Naturgeografiska Institutionen Rapport 22 (Uppsala).Google Scholar
Thompson, W.F., (1962). Preliminary notes on the nature and distribution of rock glaciers relative to true glaciers and other effects of the climate on the ground in North America. Symposium at Obergurgl International Association of Scientific Hydrology Publication No. 58 212219Obergurgl, Austria.Google Scholar
Tyrrell, J.B., (1910). “Rock glaciers” or Chrystocrenes. Journal of Geology 18, 549553.CrossRefGoogle Scholar
Vernon, P., Hughes, O.L., (1966). Surficial geology, Dawson, Larsen Creek, and Nash Creek map-areas, Yukon Territory. Geological Survey of Canada Bulletin 136, 25.Google Scholar
Von Engeln, O.D., (1935). Erosion marginal to a plateau glacier. Geological Society of America Bulletin 46, 985998.Google Scholar
Wahrhaftig, C., (1949). The frost-moved rubbles of Jumbo Dome and their significance in the Pleistocene chronology of Alaska. Journal of Geology 57, 216231.Google Scholar
Wahrhaftig, C., Cox, A., (1959). Rock glaciers in the Alaska Range. Geological Society of America Bulletin 70, 383436.Google Scholar
Wallace, R.G., (1967). Type and Rates of Alpine Mass Movement, West Edge of Boulder County, Colorado Front Range. Ph.D. Dissertation Ohio State University 200.Google Scholar
Washburn, A.L., (1973). Periglacial Processes and Environments St. Martin's Press New York .Google Scholar
White, S.E., (1967). Rockfall, Alluvial, and Avalanche Talus in the Colorado Front Range. Geological Society of America Special Paper 115, 237.Google Scholar
White, S.E., (1971a). Rock glacier studies in the Colorado Front Range, 1961 to 1968. Arctic and Alpine Research 3, 4364.CrossRefGoogle Scholar
White, S.E., (1971b). Debris falls at the front of Arapaho rock glacier, Colorado Front Range, U.S.A. Geografiska Annaler 53A, 8691.Google Scholar
Wilhelmy, H., (1958). Klimamorphologie der Massengesteine Georg Westermann Verlag Braunschweig, Germany .Google Scholar