Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-21T03:39:45.992Z Has data issue: false hasContentIssue false

Recharge to the Inter-Dune Lakes and Holocene Climatic Changes in the Badain Jaran Desert, Western China

Published online by Cambridge University Press:  20 January 2017

Abstract

We present new estimates on evaporation and groundwater recharge in the Badain Jaran Desert, western Inner Mongolia of northwestern China, based on a modified Penman Equation suitable for lakes in China. Geochemical data and water balance calculations suggest that local rainfall makes a significant contribution to groundwater recharge and that past lake-level variations in this desert environment should reflect palaeoclimatic changes. The chronology of lake-level change, established by radiocarbon and U-series disequilibrium dating methods, indicates high lake levels and a wetter climate beginning at ca. 10 ka and lasting until the late mid-Holocene in the Badain Jaran Desert. The greatest extension of lakes in the inter-dune depressions indicates that the water availability was greatest during the mid-Holocene. Relicts of Neolithic tools and pottery of Qijia Culture (2400–1900 BC) suggest relatively intensive human activity in the Badain Jaran Desert during the early and middle Holocene, supporting our interpretation of a less harsh environment. Wetter climates during the Holocene were likely triggered by an intensified East Asian summer monsoon associated with strong insolation.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, C., Feng, Z., Barton, L., (2006). Dry or humid? Mid-Holocene humidity changes in arid and semi-arid China. Quaternary Science Reviews 25, 351361.Google Scholar
(1996). ESRI, Using ArcView GIS. Environmental Systems Research Institute, Redlands.Google Scholar
Broecker, W., (1963). A preliminary evaluation of uranium series inequilibrium as a tool for absolute age measurements on marine carbonates. Journal of Geophysical Research 68, 28172834.Google Scholar
Bush, A., (2005). CO2/H2O and orbitally driven climate variability over central Asia through the Holocene. Quaternary International 136, 1523.Google Scholar
Cai, H., (1986). The tentative probe of stratigraphical division of Quaternary in Badain Jaran Desert (in Chinese). Gansu Geology 3, 142153.Google Scholar
Chen, F., Wu, W., Holmes, J., Madsen, D., Zhu, Y., Jin, M., Oviatt, J., (2003). A mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia, China. Chinese Science Bulletin 48, 110.Google Scholar
Chen, F., Yu, Z., Yang, M., Itoc, E., Wang, S., Madsen, D., Huang, X., Zhao, Y., Sato, T., Birks, J., Boomer, I., Chen, J., An, C., Wuünnemann, B., (2008). Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews 27, 351364.Google Scholar
Chen, J., Li, L., Wang, J., Barry, A., Sheng, X., Gu, W., Zhao, X., Chen, L., (2004). Groundwater maintains dune landscape. Nature 432, 459.Google Scholar
Chen, J., Zhao, X., Sheng, X., Dong, H., Rao, W., Su, Z., (2006). Formation mechanisms of megadunes and lakes in the Badain Jaran Desert, Inner Mongolia. Chinese Science Bulletin 51, 30263034.Google Scholar
Craig, H., (1957). Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133149.CrossRefGoogle Scholar
Fleitmann, D., Burns, S., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A., Buettner, A., Hippler, D., Matter, A., (2007). Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26, 170188.CrossRefGoogle Scholar
Ford, T., Pedley, H., (1996). A review of tufa and travertine deposits of the world. Earth-Science Reviews 41, 117175.Google Scholar
Gates, J., Edmunds, M., Ma, J., Scanlon, B., (2008a). Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeology Journal 16, 893910.CrossRefGoogle Scholar
Gates, J., Edmunds, M., Darling, G., Ma, J., Pang, Z., Young, A., (2008b). Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers. Applied Geochemistry 23, 35193534.Google Scholar
Gehre, M., Hoefling, R., Kowski, P., Strauch, G., (1996). Sample preparation device for quantitative hydrogen isotope analysis using chromium metal. Analytical Chemistry 68, 44144417.CrossRefGoogle Scholar
Hartmann, K., Wünnemann, B., (2009). Hydrological changes and Holocene climate variations in NW China, inferred from lake sediments of Juyanze palaeolake by factor analyses. Quaternary International 194, 2844.Google Scholar
He, Y., Theakstone, W., Zhang, Z., Zhang, D., Yao, T., Chen, T., Shen, Y., Pang, H., (2004). Asynchronous Holocene climatic change across China. Quaternary Research 61, 5263.Google Scholar
Hofmann, J., (1996). The lakes in the SE part of Badain Jaran Shamo, their limnology and geochemistry. Geowissenschaften 7/8, 275278.Google Scholar
Hofmann, J., (1999). Geoökologische Untersuchungen der Gewässer im Südosten der Badain Jaran Wüste (Aut. Region Innere Mongolei/VR China) — Status und spätquartäre Gewässerentwicklung. Berliner geographische Abhandlungen 64, 1247.Google Scholar
Hofmann, J., Geyh, M., (1998). Untersuchungen zum 14C-Reservoir Effekt an rezenten und fossilen lakustrinen Sediments aus dem Südosten der Badain Jaran Wüste (Innere Mongolei/VR China). Berliner geographische Abhandlungen 63, 8398.Google Scholar
(2008). IAEA. http://isohis.iaea.org. Visited in June 2008.Google Scholar
Jäkel, D., (1996). The Badain Jaran Desert: its origin and development. Geowissenschaften 7/8, 272274.Google Scholar
Jäkel, D., (2002). The importance of dunes for groundwater recharge and storage in China. Zeitschrift für Geomorphologie NF Suppl 126, 131146.Google Scholar
Kaufman, A., Broecker, W., (1965). Comparison of 230Th and 14C ages for carbonate materials from Late Lahontan and Bonneville. Journal of Geophysical Research 70, 40394054.Google Scholar
Kutzbach, J., (1981). Monsoon climate of the early Holocene: climate experiment with the earth's orbital parameters for 9000 yrs ago. Science 214, 5961.Google Scholar
Li, C., Yang, X., (2004). Comparative studies of the climatic indicators inferred from aeolian sediments in the desert regions of northern China. Quaternary Sciences (in Chinese with English abstract) 24, 469473.Google Scholar
Li, W., Li, S., Pu, P., (2001). Estimates of plateau lake evaporation: a case study of Zige Tangco. Journal of Lake Sciences (in Chinese with English abstract) 13, 227232.Google Scholar
Liu, J., Gao, Q., Guo, K., Liu, X., Shao, Z., Zhang, Z., (2008). Actual evaporation of bare sand dunes in Maowusu, China and its response to precipitation pattern. Journal of Plant Ecology (in Chinese with English abstract) 32, 123132.Google Scholar
Ma, L., (2002). Geological Atlas of China (in Chinese). Geological Press, Beijing.Google Scholar
Ma, J., Edmunds, M., (2006). Groundwater and lake evolution in the Badain Jaran desert ecosystem, Inner Mongolia. Hydrogeology Journal 14, 12311243.Google Scholar
Ma, Z., Wang, Z., Liu, J., Yuan, B., Xiao, J., Zhang, G., (2004). U-series chronology of sediments associated with Late Quaternary fluctuations, Balikun Lake, northwestern China. Quaternary International 121, 8998.Google Scholar
Osmond, J., Cowart, J., (1992). Groundwater. Ivanovich, M., Harmon, R. Uranium-Series Disequilibrium: Application to Earth, Marine and Environmental Sciences.Clarendon Press, Oxford.290333.Google Scholar
Parker, A., Goudie, A., Stokes, S., White, K., Hodson, M., Manning, M., Kennet, D., (2006). A record of Holocene climate change from lake geochemical analyses in southeastern Arabia. Quaternary Research 66, 465476.Google Scholar
, PCI, Geomatics, , (1998). Using PCI software. PCI Geomatics, Ontario.Google Scholar
Penman, L., (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A 193, 120145.Google Scholar
Ren, M., (1980). An Outline of Physical Geography of China (revised version, in Chinese). Commercial Publisher, Beijing.Google Scholar
Renssen, H., Brovkin, V., Fichefet, T., Goosse, H., (2006). Simulation of the Holocene climate evolution in Northern Africa: the termination of the African Humid Period. Quaternary International 150, 95102.Google Scholar
Schuster, M., Roquin, C., Duringer, P., Brunet, M., Caugy, M., Fontugne, M., Mackaye, H., Vignaud, P., Ghienne, J., (2005). Holocene Lake Mega-Chad palaeoshorelines from space. Quaternary Science Reviews 24, 18211827.Google Scholar
Sene, K., Gash, J., McNeil, D., (1991). Evaporation from a tropical lake: comparison of theory with direct measurements. Journal of Hydrology 127, 193217.Google Scholar
Shao, X., Wang, Y., Cheng, H., Kong, X., Wu, J., Edwards, R., (2006). Long-term trend and abrupt events of the Holocene Asian monsoon inferred from a stalagmite d18O record from Shennongjia in Central China. Chinese Science Bulletin 51, 221228.CrossRefGoogle Scholar
Tang, Q., Qu, Y., Zhou, Y., (1992). Hydrology and water resources utilization in arid regions of China (in Chinese). Science Press, Beijing.Google Scholar
Wang, G., Tuo, W., Du, M., (2004). Flux and composition of wind-eroded dust from different landscapes of an arid inland river basin in north-western China. Journal of Arid Environments 58, 373385.CrossRefGoogle Scholar
Wang, R., (1993). Estimating the water evaporation from Bosten Lake with some different methods. Arid Land Geography (in Chinese with English abstract) 16, 9093.Google Scholar
Wang, T., (1990). Formation and evolution of Badain Jirin Sandy Desert, China. Journal of Desert Research (in Chinese with English abstract) 10, 2940.Google Scholar
Yang, X., (1991). Geomorphologische Untersuchungen in Trockenräumen NW-Chinas unter besonderer Berücksichtigung von Badanjilin und Takelamagan. Göttinger Geographische Abhandlungen 96, 1124.Google Scholar
Yang, X., (2006). Chemistry and late Quaternary evolution of ground and surface waters in the area of Yabulai Mountains, western Inner Mongolia, China. Catena 66, 135144.CrossRefGoogle Scholar
Yang, X., Scuderi, L., (2009). Hydrological and climatic changes in deserts of China since the Late Pleistocene. Quaternary Research doi:10.1016/j.yqres.2009.10.011 Google Scholar
Yang, X., Williams, M., (2003). The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China. Catena 51, 4560.Google Scholar
Yang, X., Liu, T., Xiao, H., (2003). Evolution of megadunes and lakes in the Badain Jaran Desert, Inner Mongolia, China during the last 31000 yrs. Quaternary International 104, 99112.CrossRefGoogle Scholar
Yuan, D., Cheng, H., Edwards, R., Dykoski, C., Kelly, M., Zhang, M., Qing, J., Lin, Y., Wang, Y., Wu, J., Dorale, J., An, Z., Cai, Y., (2004). Timing, duration and transitions of the Last Interglacial Asian monsoon. Science 304, 575578.Google Scholar
Zeng, Y., Qiu, X., Liu, C., Pan, A., (2007). Effective radiation simulation of the Yellow River Basin. Scientia Geographica Sinica (in Chinese with English abstract) 27, 342347.Google Scholar
Zhang, G., Zhou, Y., (1992). Evaporation properties and estimates in the landlocked arid region in Xinjiang. China. Advances in Water Science (in Chinese with English abstract) 3, 226232.Google Scholar
Zhu, Z., Wu, Z., Liu, S., Di, X., (1980). An outline of Chinese deserts (in Chinese). Science Press, Beijing.Google Scholar