Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-w45k2 Total loading time: 0.49 Render date: 2023-01-30T12:50:27.882Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Quantitative estimates of temperature and precipitation changes over the last millennium from pollen and lake-level data at Lake Joux, Swiss Jura Mountains

Published online by Cambridge University Press:  20 January 2017

Michel Magny*
Affiliation:
CNRS-UMR 6249, Laboratoire Chrono-Environnement, UFR des Sciences et Techniques, 16 route de Gray, 25 030 Besançon, France
Odile Peyron
Affiliation:
CNRS-UMR 6249, Laboratoire Chrono-Environnement, UFR des Sciences et Techniques, 16 route de Gray, 25 030 Besançon, France
Emilie Gauthier
Affiliation:
CNRS-UMR 6249, Laboratoire Chrono-Environnement, UFR des Sciences et Techniques, 16 route de Gray, 25 030 Besançon, France
Boris Vannière
Affiliation:
CNRS-UMR 6249, Laboratoire Chrono-Environnement, UFR des Sciences et Techniques, 16 route de Gray, 25 030 Besançon, France
Laurent Millet
Affiliation:
CNRS-UMR 6249, Laboratoire Chrono-Environnement, UFR des Sciences et Techniques, 16 route de Gray, 25 030 Besançon, France
Bruno Vermot-Desroches
Affiliation:
Météo-France, 36 Avenue de l'Observatoire, 25030 Besançon, France
*
Corresponding author. Fax: +33 3 81 66 65 68. E-mail address:

Abstract

This paper presents quantitative climate estimates for the last millennium, using a multi-proxy approach with pollen and lake-level data from Lake Joux (Swiss Jura Mountains). The climate reconstruction, based on the Modern Analogue Technique, indicates warmer and drier conditions during the Medieval Warm Period (MWP). MWP was preceded by a short-lived cold humid event around AD 1060, and followed by a rapid return around AD 1400 to cooler and wetter conditions which generally characterize the Little Ice Age (LIA). Around AD 1450 (solar Spörer minimum), the LIA attained a temperature minimum and a summer precipitation maximum. The solar Maunder minimum around AD 1690 corresponded at Joux to rather mild temperatures but maximal annual precipitation. These results generally agree with other records from neighbouring Alpine regions. However, there are differences in the timing of the LIA temperature minimum depending on the proxy and/or the method used for the reconstruction. As a working hypothesis, the hydrological signal associated with the MWP and LIA oscillations at Lake Joux may have been mainly driven by a shift around AD 1400 from positive to negative NAO modes in response to variations in solar irradiance possibly coupled with changes in the Atlantic meridional overturning circulation.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert, S. Considérations sur le climat de la vallée de Joux. Bulletin de la Société Vaudoise des Sciences Naturelles 57, (1932). 493524.Google Scholar
Bard, E., Raisbeck, G., Yiou, F., and Jouzel, J. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus 52B, (2000). 985992.CrossRefGoogle Scholar
Boberg, F., and Lundstedt, H. Solar wind variations related to fluctuations of the North Atlantic Oscillation. Geophysical Research Letters 29, (2002). NO.15, 10.1029/2002GL014903 CrossRefGoogle Scholar
Bordon, A., Peyron, O., Lézine, A.M., Brewer, S., and Fouache, E. Pollen-inferred Late-Glacial and Holocene climate in southern Balkans (Lake Maliq). Quaternary International 200, (2009). 1930.CrossRefGoogle Scholar
Büntgen, U., Esper, J., Frank, D.C., Nicolussi, K., and Schmidhalter, M. A 1052-year tree-ring proxy for Alpine summer temperatures. Climate Dynamics 25, (2005). 141153.CrossRefGoogle Scholar
Büntgen, U., Frank, D.C., Nievergelt, D., and Esper, J. Summer temperature variations in the European Alps, A.D. 755–2004. Journal of Climate 19, (2006). 56065623.CrossRefGoogle Scholar
Casty, C., Wanner, H., Luterbacher, J., Esper, J., and Boehm, R. Temperature and precipitation variability in the European Alps since AD 1500. International Journal of Climatology 25, (2005). 18551880.CrossRefGoogle Scholar
Cheddadi, R., Yu, G., Guiot, J., Harrison, S.P., and Prentice, I.C. The climate of Europe 6000 years ago. Climate Dynamics 13, (1997). 19.CrossRefGoogle Scholar
Cook, E.R., d'Arrigo, R.D., and Mann, M.E. A well-verified multiproxy reconstruction of the winter North Atlantic Oscillation index since AD 1400. Journal of Climate 15, (2002). 17541764.2.0.CO;2>CrossRefGoogle Scholar
Crowley, T.J. Causes of climate change over the past 1000 years. Science 289, (2000). 270277.CrossRefGoogle ScholarPubMed
Davis, B.A.S., Brewer, S., Stevenson, A.C., and Guiot, J. The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews 22, (2003). 17011716.CrossRefGoogle Scholar
de Beaulieu, J.-L., Richard, H., Ruffaldi, P., and Clerc, J. History of vegetation, climate and human action in the French Alps and the Jura over the last 15,000 years. Dissertationes Botanicae 234, (1994). 253276.Google Scholar
Etien, N., Daux, V., Masson-Delmotte, V., Stievenard, M., Bernard, V., Durost, S., Guillemin, M.T., Mestre, O., and Pierre, M. A bi-proxy reconstruction of Fontainebleau (France) growing season temperature from AD 1596 to 2000. Climate of the Past 4, (2008). 116.CrossRefGoogle Scholar
Etien, N., Daux, V., Masson-Delmotte, V., Mestre, O., Stievenard, M., Guillemin, M.T., Boettger, T., Breda, N., Haupt, M., and Perraud, P.P. Summer maximum temperature in northern France over the past century: instrumental data versus multiple proxies (tree-ring isotopes, grape harvest dates and forest fires). Climatic Change 94, (2009). 429456.CrossRefGoogle Scholar
Gauthier, E., (2004). Forêts et agriculteurs du Jura. Les quatre derniers millénaires. Presses Universitaires de Franche-Comté 6, 197 pp.Google Scholar
Gimeno, L., dela Torre, L., Nieto, R., Garcia, R., Hernandez, E., and Ribera, P. Changes in the relationship NAO-Northern hemisphere temperature due to solar activity. Earth and Planetary Science Letters 206, (2003). 1520.CrossRefGoogle Scholar
Gimmi, U., Luterbacher, J., Pfister, C., and Wanner, H. A method to reconstruct long precipitation series using systematic descriptive observations in weather diaries: the example of the precipitation series for Bern, Switzerland (1760–2003). Theoretical and Applied Climatology 87, (2007). 185199.CrossRefGoogle Scholar
Goosse, H., Renssen, H., Timmermann, A., and Bradley, R.S. Internal and forced climate variability during the last millennium: a model-data comparison using ensemble simulations. Quaternary Science Reviews 24, (2005). 13451360.CrossRefGoogle Scholar
Guiot, J. Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology 80, (1990). 4969.CrossRefGoogle Scholar
Guiot, J., Harrison, S.P., and Prentice, I.C. Reconstruction of Holocene pattern of moisture in Europe using pollen and lake-level data. Quaternary Research 40, (1993). 139149.CrossRefGoogle Scholar
Guiot, J., Nicault, A., Rathgeber, C., Edouard, J.L., Guibal, F., Pichard, G., and Till, C. Last-millennium summer-temperature variations in western Europe based on proxy data. The Holocene 15, (2005). 489500.CrossRefGoogle Scholar
Guiot, J., Wu, H.B., Garreta, V., Hatté, C., and Magny, M. A few propsective ideas on climate reconstruction: from a statistical single proxy approach towards a multi-proxy and dynamical approach. Climate of the Past 5, (2009). 571583.CrossRefGoogle Scholar
Guiot, J., Corona, C. ESCARSEL members Growing season temperature in Europe and climate forcings for the last 1400 years. PLOS-ONE 5, 4 (2010). e9972 http://dx.doi.org/10.1371/journal.pone.0009972?>CrossRefGoogle ScholarPubMed
Holzhauser, H., Magny, M., and Zumbühl, H. Glacier and lake- level variations in west-central Europe over the last 3500 years. The Holocene 15, (2005). 789801.CrossRefGoogle Scholar
Jones, P.D. et al. High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. The Holocene 19, (2009). 349.CrossRefGoogle Scholar
Kodera, K. Solar cycle modulation of the North Atlantic Oscillation. Implication in the spatial structure of the NAO. Geophysical Research Letters 29, (2002). 1455714560.CrossRefGoogle Scholar
Kotthoff, U., Pross, J., Müller, U.C., Peyron, O., Schmiedle, G., Schulz, H., and Bordon, A. Climate dynamics in the borderlands of the Aegean Sea during formation of sapropel 1 deduced from a marine pollen record. Quaternary Science Reviews 27, (2008). 832845.CrossRefGoogle Scholar
Lund, D.C., Lynch-Stieglitz, J.L., and Curry, J.L. Gulf Stream density structure and transport during the past millennium. Nature 444, (2006). 601604.CrossRefGoogle ScholarPubMed
Luoto, T.P., and Helama, S. Paleoclimatological and paleolimnological records from fossil midges and tree-rings: the role of the North Atlantic Oscillation in eastern Finland through the Medieval Climate Anomaly and Little Ice Age. Quaternary Science Reviews 29, (2010). 24112423.CrossRefGoogle Scholar
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H. European seasonal and annual temperature variability, trends and extremes since 1500. Science 303, (2004). 14991503.CrossRefGoogle ScholarPubMed
Magny, M. Holocene fluctuations of lake levels in west-central Europe: methods of reconstruction, regional pattern, palaeoclimatic significance and forcing factors. Elias, S. Encyclopedia of Quaternary Science Vol. 2, (2006). Elsevier, 13891399.Google Scholar
Magny, M., Guiot, J., and Schoellammer, P. Quantitative reconstruction of Younger Dryas to mid-Holocene paleoclimates at Le Locle, Swiss Jura, using pollen and lake-level data. Quaternary Research 56, (2001). 170180.CrossRefGoogle Scholar
Magny, M., Gauthier, E., Vanniere, B., and Peyron, O. Palaeohydrological changes and human-impact history over the last millennium recorded at Lake Joux in the Jura Mountains, Switzerland. The Holocene 18, (2008). 255265.CrossRefGoogle Scholar
Magny, M., Arnaud, F., Holzhauser, H., Chapron, E., Debret, M., Desmet, M., Leroux, A., Millet, L., Revel, M., and Vannière, B. Solar and proxy-sensitivity imprints on palaeohydrological records for the last millennium in west-central Europe. Quaternary Research 73, (2010). 173179.CrossRefGoogle Scholar
Mangini, A., Spötl, C., and Verdes, P. Reconstruction of temperature in the Central Alps during the past 2000 yr from a d18O stalagmite record. Earth and Planetary Science Letters 235, (2005). 741751.CrossRefGoogle Scholar
Mangini, A., Blumbach, P., Verdes, P., Spötle, C., Scholz, D., Machel, H., and Mahon, S. Combined records from a stalagmite from Barbados and from lake sediments in Haiti reveal variable seasonality in the Caribbean between 6.7 and 3 ka BP. Quaternary Science Reviews 26, (2007). 1352-1343 CrossRefGoogle Scholar
Mann, M.E., Bradley, R.S., and Hughes, M.K. Northern Hemisphere temperatures during the past millennium: inferences, uncertainties and limitations. Geophysical Research Letters 26, (1999). 759762.CrossRefGoogle Scholar
Mann, M.E., Zhang, Z., Hughes, M.K., Bradley, R.S., Miller, S.K., Rutherford, S., and Ni, F. Proxy-based reconstructions of hemispheric and global surface temperature variations over the last two millennia. Proceedings of the National Academy of Science 105, (2008). 1325213257.CrossRefGoogle Scholar
Millet, L., Arnaud, F., Heiri, O., Magny, M., Verneaux, V., and Desmet, M. Late Holocene summer temperature reconstruction from chironomid assemblages of Lake Anterne, northern French Alps. The Holocene 19, (2009). 317328.CrossRefGoogle Scholar
New, M., Lister, D., Hulme, M., and Makin, I. A high resolution dataset of surface climate over global land areas. Climate Research 21, (2002). 125.CrossRefGoogle Scholar
Overpeck, J.T., Webb, T.I.I.I., and Prentice, I.C. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research 23, (1985). 87108.CrossRefGoogle Scholar
Pauling, A., Luterbacher, J., Casty, C., and Wanner, H. Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Climate Dynammics 26, (2006). 387405.CrossRefGoogle Scholar
Peyron, O., Bégeot, C., Brewer, S., Heiri, O., Millet, L., Ruffaldi, P., Van Campo, E., and Yu, G. Late-Glacial climatic changes in Eastern France (Lake Lautrey) from pollen, lake-levels, and chironomids. Quaternary Research 64, (2005). 197211.CrossRefGoogle Scholar
Peyron, O., Goring, S., Dormoy, I, Kotthoff, U., Pross, J., Beaulieu, J.L. de, Drescher-Schneider, R., Vannière, B., Magny, M., in press. Holocene seasonality changes in central Mediterranean reconstructed from Lake Accesa and Tenaghi Philippon pollen sequences. The Holocene. doi:10.1177/0959683610384162.Google Scholar
Pfister, C. Monthly temperature and precipitation in central Europe from 1529–1979: quantifying documentary evidence on weather and its effects. Bradley, R.S., and Jones, P.D. Climate since AD 1500. (1995). 118142. London and New York Google Scholar
Proctor, C.J., Baker, A., and Barnes, W.L. A three thousand year record of North Atlantic climate. Climate Dynamics 19, (2002). 449459.Google Scholar
Pross, J., Kotthoff, U., Müler, U.C., Peyron, O., Dormoy, I., Schmiedle, G., Kalaitzidis, S., and Smith, A.M. Massive perturbation in terrestrial ecosystems of the Eastern Mediterranean region associated with the 8.2 kyr climatic event. Geology 37, (2009). 887890.CrossRefGoogle Scholar
Raible, C.C., Yoshimori, M., Stocker, T.F., and Casty, C. Extreme midlatitude cyclones and their implications for precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions. Climate Dynamics 28, (2007). 409423.CrossRefGoogle Scholar
Schmidt, G., and Masson-Delmotte, V. The PAGES-CLIVAR Intersection Panel. Vision Document revised 2009. (2009). Google Scholar
Schulte, L., Veit, H., Burjachs, F., and Julià, R. Lütschine fan delta response to climate variability and land use in the Bernese Alps during the last 2400 years. Geomorphology 108, (2009). 107121.CrossRefGoogle Scholar
Shindell, D.T., Schmidt, G.A., Mann, M.E., Rind, D., and Waple, A. Solar forcing of regional climate change during the Maunder minimum. Science 294, (2001). 21492152.CrossRefGoogle ScholarPubMed
Shindell, D.T., Schmidt, G.A., Miller, R.L., and Mann, M.E. Volcanic and solar forcing climate change during the preindustrial era. Journal of Climate 16, (2003). 40944107.2.0.CO;2>CrossRefGoogle Scholar
Sicre, M.A., Jacob, J., Ezat, U., Rousse, S., Kissel, C., Yiou, P., Eiriksson, J., Knudsen, M.L., Jansen, E., and Turon, J.L. Decadal variability of sea surface temperatures off North Iceland over the last 2000 years. Earth and Planetary Science Letters 268, (2008). 137142.CrossRefGoogle Scholar
Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.B., Miller, H., and Chen, Z. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (2007). Cambridge University Press, Cambridge.Google Scholar
Stoffel, M., Luetscher, M., Bollschweiler, M., and Schlatter, F. Evidence of NAO control on subsurface ice accumulation in a 1200 yr old cave-ice sequence, St. Livres ice cave, Switzerland. Quaternary Research 72, (2009). 1626.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., and Spurk, M. Intcal98 radiocarbon age calibration, 24 000–0 cal BP. Radiocarbon 40, (1998). 10411083.CrossRefGoogle Scholar
Trachsel, M., Eggenberger, U., Grosjean, M., Blass, A., and Sturm, M. Mineralogy-based quantitative precipitation and temperature reconstructions from annually laminated lake sediments (Swiss Alps) since AD 1580. Geophysical Research Letters 35, (2008). L13707 http://dx.doi.org/10.1029/2008GL034121CrossRefGoogle Scholar
Trouet, V., Esper, J., Graham, N.E., Baker, A., Scourse, J.D., and Frank, D.C. Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly. Science 324, (2009). 7880.CrossRefGoogle ScholarPubMed
von Storch, H., Zorita, E., Jones, J., Dimitriev, Y., Gonzales-Rouco, F., and Tett, S. Reconstructing past climate from noisy data. Science 306, (2004). 679682.CrossRefGoogle ScholarPubMed
Wanner, H., Holzhauser, H., Pfister, C., and Zumbühl, H. Interannual to century scale climate variability in the European Alps. Erdkunde 54, (2000). 6269.CrossRefGoogle Scholar
Wanner, H., Brönnimann, S., Casty, C., Gyalistras, D., Luterbacher, J., Schwutz, C., Stephenson, D.B., and Xoplaki, E. North Atlantic Oscillation — Concepts and Studies. Surveys in Geophysics 22, (2001). 322382.CrossRefGoogle Scholar
22
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quantitative estimates of temperature and precipitation changes over the last millennium from pollen and lake-level data at Lake Joux, Swiss Jura Mountains
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Quantitative estimates of temperature and precipitation changes over the last millennium from pollen and lake-level data at Lake Joux, Swiss Jura Mountains
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Quantitative estimates of temperature and precipitation changes over the last millennium from pollen and lake-level data at Lake Joux, Swiss Jura Mountains
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *