Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-14T05:33:39.589Z Has data issue: false hasContentIssue false

Quantification of the Biogenic Silica Dissolution in Southern Ocean Sediments

Published online by Cambridge University Press:  20 January 2017

Jean-Jacques Pichon
Département de Géologie et Océanographie, CNRS URA 197, Université de Bordeaux I, Avenue des Facultés, 33405 Talence Cédex, France
Gilles Bareille
Département de Géologie et Océanographie, CNRS URA 197, Université de Bordeaux I, Avenue des Facultés, 33405 Talence Cédex, France
Monique Labracherie
Département de Géologie et Océanographie, CNRS URA 197, Université de Bordeaux I, Avenue des Facultés, 33405 Talence Cédex, France
Laurent D. Labeyrie
Centre des Faibles Radioactivités Laboratoire Mixte CNRS-CEA, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
Annick Baudrimont
Département de Géologie et Océanographie, CNRS URA 197, Université de Bordeaux I, Avenue des Facultés, 33405 Talence Cédex, France
Jean-Louis Turon
Département de Géologie et Océanographie, CNRS URA 197, Université de Bordeaux I, Avenue des Facultés, 33405 Talence Cédex, France


A transfer function has been established to quantify the dissolution of diatom silica in Southern Ocean sediments. The relationship between the amount of silica dissolution and changes in diatom species distribution is built by controlled progressive dissolution of biogenic silica in five recent sediment samples from box-core tops, each representative of a modern diatom species sediment assemblage. The amount of dissolved silica was measured for each experiment. The resulting data set of species abundances (42 samples containing 32 diatom species and 2 silicoflagellate genera) was added to the modern data base of diatom species distributed over the Southern Ocean (124 core tops). Q-mode factor analysis individualizes four factors explaining 83% of the variance. The first three factors are controlled by surface water properties (mostly temperature). The fourth factor is the only one correlated with loss of silica in the reference samples (R = 0.900). We quantified the dissolution factor using this correlation: superficial sediments of the Southeast Indian Ocean are characterized, from low to high latitudes, by a decrease in silica loss by dissolution (from >50 to 10%) from the Subantarctic Zone (40°S) to around 55°S, followed by an increase of silica loss to values larger than 60% between 63° and 68°S. Application of the dissolution factor in two cores from the Southern Ocean (≈44° and 55°S) shows enhanced opal dissolution during the last glaciation, particularly during Emiliani's stage 3 (from 40,000 to 30,000 yr B.P.).

Research Article
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abelmann, A. Gersonde, R. Spiess, V., (1990). Pliocene-Pleistocene plaeoceanography in the Weddell Sea—Siliceous microfossil evidence Bleil, U. Thiede, J. Geological History of the Polar Oceans: Arctic versus Antarctic NATO ASI Series, C 308 729759 Google Scholar
Bard, E. Labeyrie, L.D. Arnold, M. Labracherie, M. Pichon, J.J. Duprat, J. Duplessy, J.C., (1989). AMS-14C ages measured in deep-sea cores from the Southern Ocean: Implications for sedimentation rates during Isotope Stage 2 Quaternary Research 31, 309317 CrossRefGoogle Scholar
Bareille, G. Labracherie, M. Maillet, N. Latouche, C., (1990). Quantification des teneurs en opale biogène des sédiments de l'Océan Austral par diffractométrie X Clay Minerals 25, 363373 CrossRefGoogle Scholar
Bareille, G. Labracherie, M. Maillet, Labeyrie, L. D. Pichon, J. J., and Turon, J. L. (in press). Biogenic silica accumulation rate during the Holocene in the Southeastern Indian Ocean. Marine Chemistry .CrossRefGoogle Scholar
Bunt, J.S. Wood, E.J.F., (1963). Microalgae and Antarctic sea-ice Nature (London) 199, 1254 CrossRefGoogle Scholar
Burckle, L.H., (1984). Diatom distribution and paleoceanographic reconstruction in the Southern Ocean—Present and last glacial maximum Marine Micropaleontology 9, 241262 CrossRefGoogle Scholar
Burckle, L.H. Cirilli, J., (1987). Origin of diatom ooze belt in the Southern Ocean: Implications for late Quaternary paleoceanography Micropaleontology 33, 8286 CrossRefGoogle Scholar
Deacon, G.E.R., (1964). Antarctic Oceanography: The physical environment Hermann, Antarctic Biology 8186 Paris Google Scholar
Gordon, A.L., (1971). Oceanography of Antarctic waters Antarctic Oceanology I Reid, J. Antarctic Research Series 15 169203 CrossRefGoogle Scholar
Hays, J.D. Shackleton, N. Irving, G., (1976). Reconstruction of the Atlantic and Western Indian Ocean Sectors of the 18,000 B.P. Antarctic Ocean Cline, R.M. Hays, J.D. Investigation of Late Quaternary Paleoceanography and Paleoclimatology Geological Society of America, Memoir 145 337372 Boulder, CO CrossRefGoogle Scholar
Hellmer, H. Bersch, M. Augstein, E. Grabemann, I., (1985). The Southern Ocean: A survey of oceanographic and marine meteorological research work Ber Polarforshung 26,Google Scholar
Imbrie, J. Kipp, N.G., (1971). A new micropaleontological method for quantitative paleoclimatology: Application to a late Pleistocene Caribbean core Turekian, K. Late Cenozoic Glacial Ages Yale Univ. Press New Haven, CT 71181 Google Scholar
Labeyrie, L.D. Pichon, J.J. Labracherie, M. Ippolito, P. Duprat, J. Duplessy, J.C., (1986). Melting history of Antarctica during the past 60,000 years Nature (London) 322, 701706 CrossRefGoogle Scholar
Labracherie, M. Labeyrie, L.D. Duprat, J. Bard, E. Arnold, M. Pichon, J.J. Duplessy, J.C., (1989). The last deglaciation in the Southern Ocean Paleoceanography 4, 629638 CrossRefGoogle Scholar
Lapaquellerie, Y., (1987). Utilisation de la diffractométrie X pour la détermination des constituants amorphes dans les sédiments marins (silice biogène et cendres volcaniques) Clay Minerals 22, 457463 CrossRefGoogle Scholar
Lutjeharms, J.R.E., (1985). Location of frontal systems between Africa and Antarctica: Some preliminary results Deep-Sea Research 32, 329341 CrossRefGoogle Scholar
Mikkelsen, N., (1980). Experimental dissolution of Pliocene diatoms Nova Hedwigia 64, 893 Google Scholar
Mullin, J.B. Riley, J.P., (1955). The colorimetric determination of silicate with special reference to sea and natural waters Analytica Chimica Acta 12, 162176 CrossRefGoogle Scholar
Pichon, J.J., (1985). Les diatomées traceurs de l'évolution climatique et hydrologique de l'Océan Austral au cours du Dernier Cycle Climatique, Talence Unpublished Ph.D. dissertation Université de Bordeaux I Google Scholar
Pichon, J.J. Labracherie, M. Labeyrie, L.D. Duprat, J., (1987). Transfer functions between diatom assemblages and surface hydrology in the Southern Ocean Palaeogeography, Palaeoclimatology, Palaeoecology 61, 7995 CrossRefGoogle Scholar
Pichon, J. J. Labeyrie, L. D. Bareille, G. Labracherie, M. Duprat, J., and Jouzel, J. (in press). Surface water temperature changes in the high latitudes of the Southern Hemisphere over the last glacial-interglacial cycle. Paleoceanography .CrossRefGoogle Scholar
Schrader, H.J., (1974). Proposal for a standardized method of cleaning diatom-bearing deep-sea and land-exposed marine sediments 3rd Symposium on Recent and Fossil Marine Diatoms Simonsen, R. Nova Hedwigia 45, 403409 Google Scholar
Shemesh, A. Burckle, L.H. Froelich, P.N., (1989). Dissolution and preservation of antarctic diatoms and the effect on sediment thanatocoenoses Quaternary Research 31, 288308 CrossRefGoogle Scholar
Sverdrup, H.U. Johnson, M.W. Fleming, R.H., (1942). The Oceans: Their physics, chemistry and biology Prentice-Hall Englewood, NJ Google Scholar
Van Bennekom, A.J. Berger, G.W. van Der Gaast, S.J. De Vries, R.T.P., (1988). Primary productivity and the silica cycle in the Southern Ocean (Atlantic sector) Palaeogeography, Palaeoclimatology, Palaeoecology 67, 1930 CrossRefGoogle Scholar
Williams, D.F. Healy-Williams, N. Leschak, P., (1985). Dissolution and water-mass patterns in the Southeast Indian Ocean, Part I: Evidence from Recent to Late Holocene foraminiferal assemblages Geological Society of America Bulletin 96, 176189 2.0.CO;2>CrossRefGoogle Scholar