Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-66nw2 Total loading time: 0.375 Render date: 2021-11-30T02:46:50.314Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Paleoevaporation and Paleoprecipitation in the Tanganyika Basin at 18,000 Years B.P. Inferred from Hydrologic and Vegetation Proxies

Published online by Cambridge University Press:  20 January 2017

Laurent Bergonzini
Affiliation:
Laboratoire des Processus et Archives Sédimentaires, URA-CNRS 723, GDR-CNRS 970 Bâtiment 504, Université Paris-Sud, 91405, Orsay Cedex, France
Francoise Chalié
Affiliation:
Laboratoire des Processus et Archives Sédimentaires, URA-CNRS 723, GDR-CNRS 970 Bâtiment 504, Université Paris-Sud, 91405, Orsay Cedex, France
Francoise Gasse
Affiliation:
Laboratoire des Processus et Archives Sédimentaires, URA-CNRS 723, GDR-CNRS 970 Bâtiment 504, Université Paris-Sud, 91405, Orsay Cedex, France

Abstract

Paleo-hydrologic and -vegetation proxy data from the Tanganyika basin are integrated in energy and water balance equations to infer past evaporation and precipitation during the last glacial maximum (LGM). Our approach is first validated on the modern system. Large variations are assigned to input variables to simulate the interannual precipitation variability. Equations are then applied to the LGM. We first change those input parameters inferred from proxies (basin and lake surfaces, temperature, and land albedo). Our LGM simulation suggests (in percent of modern mean values) decreases in evaporation from the lake [El: −5% (between −13% and +3%)] and land [Ec: −8% (−19/+5)] bodies, in precipitation [P: −11% (−21/0)] and (P − Ec): −42% (−44/−40). Decreases in P and E are amplified [El: −8% (−16/0); Ec: −14% (−24/−2); P: −17% (−26/−6)] when including empirical changes in atmospheric transmission coefficient and Bowen ratio. Sensitivity runs suggest that even large changes in cloud cover and air humidity should not modify these trends. The results suggest that the Earth's glacial/interglacial boundary conditions play a significant role on climate of subequatorial southern Africa.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, L. J., Tetzlaff, G., 1985, The extension of lake Chad at about 18,000 yr B. P, Zeitschrift für Gletscherkunde und Glazialgeologie, 21, 115123.Google Scholar
Anderson, D. M., Webb, R. S., 1994, Ice-age tropics revisited, Nature, 367, 2324.CrossRefGoogle Scholar
Benson, L. V., 1981, Paleoclimatic significance of lake-level fluctuations in the Lahontan basin, Quaternary Research, 16, 390403.CrossRefGoogle Scholar
Berger, A., Loutre, M. F., 1991, Insolation values for the climate of the last 10 million years, Quaternary Science Reviews, 10, 297317.CrossRefGoogle Scholar
Bergonzini, L., 1995, Les Écoulements de la Lukuga à l'Exutoire du Lac Tanganyika, Département de Géologie et Minéralogie, Musée Royal de l'Afrique Centrale. Tervuren, Rapport Annuel 1993–1994, 7989.Google Scholar
Bonnefille, R., Roeland, J. C., Guiot, J., 1990, Temperature and rainfall estimates for the past 40,000 years in Equatorial Africa, Nature, 346, 347349.CrossRefGoogle Scholar
Bonnefille, R., Chalié, F., Guiot, J., Vincens, A., 1992, Quantitative estimates of full glacial temperatures in Equatorial Africa from palynological data, Climate Dynamics, 6, 251257.CrossRefGoogle Scholar
Budyko, M. I., 1974, Climate and life, International Geophysics Series, Academic Press, New York, p. 508.Google Scholar
Bultot, F., 1962, Sur la détermination des moyennes mensuelles et annuelles de l'evaporation réelle et de l'ecoulement dans le Bassin congolais, Bulletin des séances de l'Académie Royale des Sciences d'Outre-Mer Belge, 8, 816838.Google Scholar
Bultot, F., 1965, A propos de l'evaporation du lac Tanganyika, Bulletin des séances de l'Académie Royale des Sciences d'Outre-Mer Belge, N°8, 12261241.Google Scholar
Bultot, F., 1976, Atlas climatique du bassin congolais 1, 2, 3, 4, Institut National pour l'Etude Agronomique du Congo, République Démocratique du Congo .Google Scholar
Bultot, F., 1993, Evaporation from a Tropical lake: Comparison of theory with direct measurements-comment, Journal of Hydrology, 143, 513519.CrossRefGoogle Scholar
Capart, A., 1949, Sondage et carte bathymétrique. Exploration hydrobiologique du lac Tanganyika (1946–1947), Institut Royal des Sciences Naturelles de Belgique, 2, 116.Google Scholar
Chalié, F., 1995, Paléoclimats du bassin Tanganyika Sud au cours des 25 derniers mille ans. Reconstitution quantitative par le traitement statistique des données polliniques, Comptes Rendus de l'Académie des Sciences (Paris), Series 2, 320, 205208.Google Scholar
Science, 241, 1988, 10431052.CrossRefGoogle ScholarPubMed
Degens, E. T., Herzen, R. P., Wong, H. K., 1971, Lake Tanganyika: water chemistry, sediments, geological structure, Naturwissenshaften, 58, 229241.CrossRefGoogle Scholar
Degens, E. T., Hecky, R. E., 1973, Palaeoclimatic reconstruction of late Pleistocene and Holocene based on biogenic sediments from the Black Sea and a tropical African lake, Colloques internationaux du CNRS, 219, 12.Google Scholar
Devroey, E., 1959, Annuaire hydrologique du Congo-belge et du Ruanda-Urundi, Mémoires de l'Académie Royale des Sciences d'Outre-mer, .Google Scholar
Gasse, F., Lédée, V., Massault, M., Fontes, J. -Ch., 1989, Water-level fluctuation of lake Tanganyika in phase with oceanic change during the last glaciation and deglaciation, Nature, 342, 5759.CrossRefGoogle Scholar
Gillman, F. G., 1933, Hydrology of lake Tanganyika, Bulletin of Geological Survey, 127.Google Scholar
Griffiths, J. F., 1972, World Survey of Climatology 10, Climates of Africa, J. F. Griffiths Elsevier Publishing Company, p. 604.Google Scholar
Guiot, J., 1990, Methodology of the last climatic cycle reconstruction from pollen data, Palaeogeography Palaeoclimatology Palaeoecology, 80, 4969.CrossRefGoogle Scholar
Haberyan, K. A., Hecky, R. E., 1987, The Late Pleistocene and Holocene stratigraphy and paleolimnology of Lakes Kivu and Tanganyika, Palaeogeography Palaeoclimatology Palaeoecology, 61, 169197.CrossRefGoogle Scholar
Hastenrath, S. L., Kutzbach, J. E., 1983, Paleoclimate and water budget of East African lakes, Quaternary Research, 19, 141153.CrossRefGoogle Scholar
Hastenrath, S. L., Kutzbach, J. E., 1984, Late Pleistocene climate and water budget of the South American Altiplano, Quaternary Research, 24, 249256.CrossRefGoogle Scholar
Hillaire-Marcel, C., Aucour, A. M., Bonnefille, R., Riollet, G., Vincens, A., Williamson, D., 1989, 13 , Quaternary Science Reviews, 8, 207212.CrossRefGoogle Scholar
Joussaume, S., 1993, Paleoclimatic Tracers: an investigation using an atmospheric General Circulation Model under Ice Age conditions. 1. Desert dust, Journal of Geophysical Research, 98, 27672805.CrossRefGoogle Scholar
Joussaume, S., Taylor, K. E., 1995, Status of the Paleoclimate Modeling Intercomparison Project (PMIP), WCPR Report, 92, 425430.Google Scholar
Kayinga, T., 1991, Observation of convective activity from satellite data over the lake Victoria region in April 1985, Veille climatique satellitaire, 37, 4455.Google Scholar
Kutzbach, J. E., 1980, Estimate of past climate at paleolake Chad, North Africa, based on a hydrological and energy balance model, Quaternary Research, 14, 210223.CrossRefGoogle Scholar
Kutzbach, J. E., Street-Perrott, F. A., 1985, Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr B.P, Nature, 317, 130134.CrossRefGoogle Scholar
Kutzbach, J. E., Guetter, P. J., 1986, The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years, Journal of Atmospheric Sciences, 41, 17261759.2.0.CO;2>CrossRefGoogle Scholar
Lautenschlager, M., Herterich, K., 1990, Atmospheric response to ice-age conditions—climatology near the earth's surface, Journal of Geophysical Research, 95, 246258.CrossRefGoogle Scholar
Livingstone, D. A., 1965, Sedimentation and the history of water level change in Lake Tanganyika, Limnology and Oceanography, 10, 607610.CrossRefGoogle Scholar
Hydrological year-book, 1980, 364.Google Scholar
Rind, D., 1987, Components of the ice age circulation, Journal of Geophysical Research, 92, 42414281.CrossRefGoogle Scholar
Scholz, C. A., Rosendahl, B. R., 1988, Low level stand in lakes Malawi and Tanganyika, East Africa, delineated with multifold seismic data, Science, 240, 16451648.CrossRefGoogle Scholar
Stoffers, P., Hecky, R. E., 1978, Late Pleistocene-Holocene evolution of the Tanganyika basin, Spec. Publs. Int. Ass. Sediment., 2, 4355.Google Scholar
Street-Perrott, F. A., Marchand, D. S., Roberts, N., Harrison, S. P., 1989, Global lake-level variations from 18,000 to 0 years ago: A palaeoclimatic analysis, United States Department of Energy Eds., 1213.Google Scholar
Swain, A. M., Kutzbach, J. E., Hastenrath, S. L., 1982, Estimate of Holocene precipitation for Rajasthan, India, based on pollen and lake-level data, Quaternary Research, 19, 117.CrossRefGoogle Scholar
Tiercelin, J. J., Scholz, C. A., Mondeguer, A., Rosendahl, B. R., Ravenne, C., 1989, Discontinuités sismiques et sédimentaires dans la série de remplissage du fossé du Tanganyika, rift Est-africain, Comptes Rendus de l'Académie des Sciences (Paris) Series 2, 309, 15991606.Google Scholar
Tiercelin, J. J., Soreghan, M., Cohen, A. S., Lezzar, K. E., Bouroullec, J. L., 1992, Sedimentation in large rift lakes: Example from the Middle Pleistocene-Modern deposits of the Tanganyika Trough, East African Rift system, Bull. Centres Rech. Explor.-Prod. Elf Aquitaine, 16, 83111.Google Scholar
Vincens, A., 1991, Late Quaternary vegetational history of the South-Tanganyika basin. Climatic implications in South-Central Africa, Palaeogeography Palaeoclimatology Palaeoecology, 86, 207226.CrossRefGoogle Scholar
Vincens, A., Chalié, F., Bonnefille, R., Guiot, J., Tiercelin, J. -J., 1993, Pollen-derived rainfall and temperature estimates from lake Tanganyika and their implication for Late Pleistocene water levels, Quaternary Research, 40, 343350.CrossRefGoogle Scholar
Voce, R. S., Schmoyer, R. L., Steurer, P. M., Peterson, T. C., Heim, R., Karl, T. R., Eischeid, J. K., The Global Historical Climatology Network: Long-Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data, 1992, .Google Scholar
White, F., 1983, Nat. Resour. Res, The vegetation of Africa, 20, 356.Google Scholar
World Meteorological Organization United Nations Development Programme Hydrometeorological survey of the catchments of lakes Victoria, Kyoga and Albert, 14, 1974, Google Scholar
29
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Paleoevaporation and Paleoprecipitation in the Tanganyika Basin at 18,000 Years B.P. Inferred from Hydrologic and Vegetation Proxies
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Paleoevaporation and Paleoprecipitation in the Tanganyika Basin at 18,000 Years B.P. Inferred from Hydrologic and Vegetation Proxies
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Paleoevaporation and Paleoprecipitation in the Tanganyika Basin at 18,000 Years B.P. Inferred from Hydrologic and Vegetation Proxies
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *