Hostname: page-component-cc8bf7c57-7lvjp Total loading time: 0 Render date: 2024-12-11T11:13:24.820Z Has data issue: false hasContentIssue false

Late Stage 5 Glacio-isostatic Sea in the St. Lawrence Valley, Canada and United States

Published online by Cambridge University Press:  20 January 2017

Serge Occhietti
Affiliation:
GEOTOP, Université du Québec à Montréal, C.P. 8888 Centre-Ville, Montréal, Québec, Canada, H3C 3P8
Sanda Balescu
Affiliation:
Laboratoire de luminescence LUX, GEOTERAP, Université du Québec à Montréal, C.P. 8888 Centre-Ville, Montréal, Québec, Canada, H3C 3P8
Michel Lamothe
Affiliation:
Laboratoire de luminescence LUX, GEOTERAP, Université du Québec à Montréal, C.P. 8888 Centre-Ville, Montréal, Québec, Canada, H3C 3P8
Martine Clet
Affiliation:
Centre CNRS de géomorphologie, rue des Tilleuls, 14 000, Caen, France
Thomas Cronin
Affiliation:
U.S. Geological Survey, 970 National Center, Reston, Virginia, 22092
Pierre Ferland
Affiliation:
GEOTOP, Université du Québec à Montréal, C.P. 8888 Centre-Ville, Montréal, Québec, Canada, H3C 3P8
Pierre Pichet
Affiliation:
GEOTOP, Université du Québec à Montréal, C.P. 8888 Centre-Ville, Montréal, Québec, Canada, H3C 3P8

Abstract

Although post-glacial marine sediments of late Wisconsinan and early Holocene age are common in eastern Canada and the northeastern United States, remnants of older Pleistocene marine sediments are scarce. A fossiliferous marine clay that predates the classical Wisconsinan was recently discovered in the St. Lawrence Valley. A dominantly estuarine environment is inferred from the geochemistry of the shells (δ18O = −7.1) and from benthic foraminifer and ostracode assemblages. The clay indicates a marine invasion (Cartier Sea) shallower and probably shorter than that during the upper late Wisconsinan Champlain Sea episode (12,000–9,500 yr B.P.). The pollen content shows that regional vegetation during the marine episode began as open tundra, then became a Betula and Alnus crispa forest, reached a climatic optimum with Quercus, Corylus, and Abies, and concluded as a Pinus/Picea boreal forest. A corrected infrared stimulated luminescence age of 98,000 ± 9000 yr is compatible with the epimerization ratio of shells. The Cartier Sea resulted from a post-glacial glacio-isostatic marine invasion in the St. Lawrence lowlands. It probably occurred during late stage 5 and is tentatively assigned to the transition of oxygen isotope substages 5b/5a. This marine episode dates to stage 5 of the preceding continental glacier which extended to middle latitudes in NE America.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. W. Matthews, J. V. Jr. Mott, R. J., and Richard, S. H. (1990). The Sangamonian Pointe-Fortune site, Ontario-Québec border. Géographie physique et Quaternaire 44 , 271287.Google Scholar
Andrews, J. T., and Mahaffy, M. A. W. (1976). Growth rate of the Laurentide Ice Sheet and Sea Level lowering (with emphasis on the 115,000 B.P. Sea Level low). Quaternary Research 6 , 167183.Google Scholar
Andrews, J. T. Shilts, W. W., and Miller, G. H. (1983). Multiple deglaciation of the Hudson Bay Lowlands, Canada, since deposition of the Missinaibi (last-interglacial?) Formation. Quaternary Research 19 , 1837.Google Scholar
Balescu, S., and Lamothe, M. (1994). Comparison of TL and IRSL age estimates of feldspar coarse grains from waterlain sediments. Quaternary Geochronology 13 , 437444.Google Scholar
Bernier, F., and Occhietti, S. (1991). Nouvelle séquence glaciaire antérieure aux Sédiments de Saint-Pierre, Sainte-Anne-de-la-Pérade, Québec. Géographie physique et Quaternaire 45 , 101110.Google Scholar
Besré, F., and Occhietti, S. (1990). Les Varves de Deschaillons, les Rythmites du Saint-Maurice et les rythmites de Leclercville, du Pléistocène supérieur de la Vallée moyenne du Saint-Laurent (Québec). Géographie physique et Quaternaire 44 , 181198.Google Scholar
Bloom, A. L. Broecker, W. S. Chappell, J. M. A. Matthews, R. K., and Mesolella, K. J. (1974). Quaternary sea level fluctuations on a tectonic coast: New 230Th/234U dates from the Huon Peninsula, New Guinea. Quaternary Research 4, 185205.Google Scholar
Brodeur, D., and Allard, M. (1985). Stratigraphie et Quaternaire de l’île aux Coudres, estuaire moyen du Saint-Laurent, Québec. Géographie physique et Quaternaire 39, 183197.Google Scholar
Clet, M., and Occhietti, S. (1994). Palynologie et paléoenvironnements des épisodes du Sable de Lotbinière et des Varves de Deschaillons (Pléistocène supérieur) de la vallée du Saint-Laurent. Canadian Journal of Earth Sciences 31 , 14741485.Google Scholar
Clet, M., and Occhietti, S. (1995). Palynologie des sédiments de la fin de l’optimum climatique de l’Interglaciaire Sangamonien, île aux Coudres, estuaire du Saint-Laurent, Québec. Géographie physique et Quaternaire 49, 291304.Google Scholar
Cronin, T. M. (1979). Late Pleistocene benthic foraminifers from the St. Lawrence Lowlands. Journal of Paleontology 53, 781814.Google Scholar
Cronin, T. M. (1988). Paleozoogeography of post-glacial Ostracoda from northeastern North America. In “The Late Quaternary Development of the Champlain Sea Basin” (Gadd, N. R., Ed.), Geological Association of Canada Special Paper 35, pp. 125144.Google Scholar
de Vernal, A. Goyette, C., and Rodrigues, C. G. (1989). Contribution palynostratigraphique (dinokystes, pollen et spores) à la connaissance de la mer de Champlain: Coupe de Saint-Césaire, Québec. Canadian Journal of Earth Sciences 26 , 24502464.Google Scholar
Diouf, B. Giresse, P. Occhietti, S. Causse, C., and Pichet, P (1995). Petrological and geochemical study of the calcareous sandstone of west African marine Pleistocene (Cap des Biches, Sénégal). Quaternary International 29–30 , 4960.Google Scholar
Ferland, P., and Occhietti, S. (1990). L’Argile de la Pérade: nouvelle unité marine antérieure au Wisconsinien supérieur. vallée du Saint-Laurent, Québec. Géographie physique et Quaternaire 44 , 159172.Google Scholar
Gadd, N. R. (1971). Pleistocene geology of the central St. Lawrence Lowland, with selected passages from an unpublished manuscript: The St. Lawrence Lowland, by J. W. Goldthwaith. Geological Survey of Canada Memoir 359.Google Scholar
Grant, D. R. (1989). Quaternary geology of the Atlantic Appalachian region of Canada. In “Quaternary Geology of Canada and Greenland” (Fulton, R. J., Ed.), Geological Survey of Canada, Geology of Canada, Vol. 1, Chap. 5, pp. 393440.Google Scholar
Hillaire-Marcel, C., and Occhietti, S. (1980). Chronology, paleogeography and paleoclimatic significance of the late and post-glacial events in eastern Canada. Zeitschrift für Geomorphologie 24 , 373392.Google Scholar
Kaye, C. A. (1961). Pleistocene stratigraphy of Boston, Massachusetts. U. S. Geological Survey, Professional Paper 424, B73B76.Google Scholar
Lamothe, M. (1989). A new framework for the Pleistocene stratigraphy of the central St. Lawrence Lowland, Southern Québec. Géographie physique et Quaternaire 43 , 119129.Google Scholar
Lamothe, M. Balescu, S., and Auclair, M., (1994). Natural IRSL intensities and apparent luminescence ages of single feldspar grains extracted from partially bleached sediments. Radiation Measurements 23 , 555561.Google Scholar
Mejdahl, V. (1988). Long-term stability of the TL signal in alkali feldspars. Quaternary Science Reviews 7 , 357360.Google Scholar
Miller, G. H., and Mangerud, J. (1985). Aminostratigraphy of european marine interglacial deposits. Quaternary Science Reviews 4 , 215278.Google Scholar
Occhietti, S. (1982). Synthèse lithostratigraphique et paléoenvironnements quaternaires au Québec méridional. Hypothèse d’un centre d’englacement wisconsinien au Nouveau-Québec. Géographie physique et Quaternaire 36 , 1549.Google Scholar
Occhietti, S. (1983). The Laurentide Ice-Sheet: Climatic and oceanic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 44 , 122.Google Scholar
Occhietti, S., and Clet, M. (1989). The last interglacial/glacial group of sediments in the Saint-Lawrence Valley, Québec, Canada. Quaternary International 3–4, 123129.Google Scholar
Occhietti, S. Long, B. Clet, M. Boespflug, X., and Sabeur, N. (1995). Séquence de la transition Illinoien-Sangamonien: Forage IAC-91 de l’île aux Coudres, estuaire moyen du Saint-Laurent, Québec. Canadian Journal of Earth Sciences 32 , 19501964.Google Scholar
Oldale, R. N. Valentine, P. C. Cronin, T. M. Spiker, E. C. Blackwelder, B. W. Belknap, D. F. Wehmiller, J. F., and Szabo, B. J. (1982). Stratigraphy, structure, absolute age, and paleontology of the upper Pleistocene deposits at Sankaty Head, Nantucket Island, Massachusetts. Geology 10 , 246252.Google Scholar
Parent, M., and Occhietti, S. (1988). Late Wisconsinan deglaciation and Champlain Sea invasion in the St. Lawrence Valley, Québec. Géographie physique et Quaternaire 42 , 215246.Google Scholar
Richard, P. J. H. (1994). Postglacial Paleophytogeography of the Eastern St. Lawrence River Watershed and the Climatic Signal of the Pollen Record. Paleogeography, Paleoclimatology, Paleoecology 109 , 137163.Google Scholar
Schafer, J. P., and Hartshorn, J. H. (1965). The Quaternary of New England. In “The Quaternary of the United States.” A review volume for the VII Congress of the International Association for Quaternary Research (Wright, H. E. Jr. and Frey, D. G., Eds.), pp. 113128. Princeton Univ. Press, Princeton, NJ.Google Scholar
Shackleton, N. J., and Opdyke, N. D. (1973). Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V 28-238: Oxygen isotope temperatures and ice volume on a 105 and 106 year scale. Quaternary Research 3 , 3955.Google Scholar
Skinner, R. G. (1973). Quaternary stratigraphy of the Moose river basin, Ontario. Geological Survey of Canada Bulletin 225.Google Scholar
Stuiver, M. Heusser, C. J., and Yang, L. C. (1978). North American glacial history extended to 75,000 years ago. Science 200 , 1621.Google Scholar
Thorleifson, L. H. Wyatt, P. H. Shilts, W. W., and Nielsen, E. (1992). Hudson Bay lowland Quaternary stratigraphy: Evidence for early Wisconsinan glaciation centered in Quebec. In “The Last Interglacial-Glacial transition in North America” (Clark, P. U. and Lea, P. D., Eds.), Geological Society of America Special Paper 270, pp. 207221.Google Scholar
Vacher, H. L., and Hearty, P., 1989. History of stage 5 sea level in Bermuda: Review with new evidence of a brief rise to present sea level during substage 5a. Quaternary Science Reviews 8 , 159168.Google Scholar
Vernekar, A. D. (1972). Long-period global variations of incoming solar radiation. American Meteorological Society, Meteorological Monographs 12 , 141154.Google Scholar
Wehmiller, J. F. (1984). Interlaboratory comparison of amino acid enantiomeric ratios in fossil Pleistocene mollusks. Quaternary Research 22 , 109120.Google Scholar
Wehmiller, J. F. Belknap, D. F. Boutin, B. S. Mirecki, J. E. Rahaim, S. D., and York, L. L. (1988). A review of the aminostratigraphy of Quaternary mollusks from United States Atlantic Coastal Plain sites. In “Dating Quaternary Sediments” (Easterbrook, D. L., Ed.), Geological Society of America Special Paper 227, 69110.Google Scholar