Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-qdp55 Total loading time: 0.314 Render date: 2021-12-03T01:59:23.215Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Late Quaternary Vegetation and Climate Change in the Amazon Basin Based on a 50,000 Year Pollen Record from the Amazon Fan, ODP Site 932

Published online by Cambridge University Press:  20 January 2017

Simon G. Haberle
Affiliation:
Smithsonian Tropical Research Institute, Box 2072, Balboa, Republic of Panama
Mark A. Maslin
Affiliation:
Environmental Change Research Centre, Department of Geography, University College London, 26 Bedford Way, London, WC1H 0AP, United Kingdom

Abstract

Hemipelagic sediments from the Amazon deep-sea fan, ODP Site 932 (5° 12.7′N, 47° 1.8′W), and continental shelf provide a 50,000-yr-long pollen record of Amazon Basin vegetation. The age model for Hole 932A is constrained by eight magnetic remanence intensity features, one paleomagnetic excursion, and three AMS14C dates.Alchornea,Melastomataceae, Myrtaceae, and Moraceae/Urticaceae are dominant taxa in the pollen record between 40,200 and 19,800 cal yr B.P. Andean taxa, such asPodocarpusandHedyosmum,increase in abundance between 19,800 and 11,000 cal yr B.P. and prior to 40,200 cal yr B.P. The Holocene pollen assemblage, derived from Amazon River and continental shelf sediments, is dominated by secondary growth taxa, such asCecropia.Climatic factors influencing the development of glacial and interglacial tropical vegetation are considered by comparing marine with terrestrial records of vegetation change. This comparison shows that the Amazon Basin forests were not extensively replaced by savanna vegetation during the glacial period, contradicting the refugia hypothesis.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behling, H. (1996). First report on new evidence for the occurrence of Podocarpus and possible human presence at the mouth of the Amazon during the late-glacial. Vegetation History and Archaeobotany 5, 241246.CrossRefGoogle Scholar
Behling, H., and Lichte, M. (1996). Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quaternary Research 48, 348358.CrossRefGoogle Scholar
Bennett, K.D. (1994). Confidence intervals for age estimates and deposition times in late-Quaternary sediment sequences. The Holocene 4, 337348.CrossRefGoogle Scholar
Bird, M.I., Fyfe, W.S., Pinheiro-Dick, D., and Chivas, A.R. (1992). Carbon isotope indicators of catchment vegetation in the Brazilian Amazon. Global Biogeochemical Cycles 6, 293306.CrossRefGoogle Scholar
Bush, M.B. (1991). Modern pollen-rain data from South and Central America: A test of the feasibility of fine-resolution lowland tropical palynology. The Holocene 1, 162167.CrossRefGoogle Scholar
Bush, M.B. (1994). Amazonian speciation: A necessarily complex model. Journal of Biogeography 21, 517.CrossRefGoogle Scholar
Bush, M.B., and Colinvaux, P.A. (1990). A long climatic and vegetation record from lowland Panama. Journal of Vegetation Science 1, 105118.CrossRefGoogle Scholar
Bush, M.B., Colinvaux, P.A., Wiemann, M.C., Piperno, D.R., and Liu, K.B. (1990). Late Pleistocene temperature depression and vegetation change in Ecuadorian Amazonia. Quaternary Research 34, 330345.CrossRefGoogle Scholar
Caratini, C., Bellet, J., and Tissot, C. (1975). Étude microscopique de la matière organique: palynologie et palynofaciès. Géochimie des sédiments marins profonds. Orgon II, Atlantique, N.E. Brésil Editions du Centre National de la Recherche Scientifique, Paris.p. 157–178Google Scholar
Cisowski, S.M., and Hall, F. (1997). An examination of the paleointensity record and geomagnetic excursions recorded in Leg 155 cores.Flood, R.D., Piper, D.J.W., Klaus, A., Peterson, L.C. Proceedings of the Ocean Drilling Program, Scientific Results, Amazon Fan. Vol 155 Ocean Drilling Program, College Station.231244.Google Scholar
Colinvaux, P.A. (1987). Amazon diversity in the light of the paleoecological record. Quaternary Science Review 6, 93114.CrossRefGoogle Scholar
Colinvaux, P.A., De Oliviera, P.E., Moreno, J.E., Miller, M.C., and Bush, M.B. (1996). A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274, 8588.CrossRefGoogle Scholar
Coutinho, L.M. (1990). Fire in the ecology of the Brazilian cerrado.Goldammer, J.G. Fire in the Tropical Biota: Ecosystem Processes and Global Challenges Springer-Verlag, Berlin.82105.CrossRefGoogle Scholar
Damuth, J.E. (1975). Quaternary climate change as revealed by calcium carbonate fluctuations in western Equatorial Atlantic sediments. Deep-Sea Research 22, 725743.Google Scholar
Damuth, J.E., and Fairbridge, R.W. (1970). Equatorial Atlantic deep-sea arkosic sands and ice age aridity in tropical South America. Geo-Marine Letters 3, 109117.CrossRefGoogle Scholar
Damuth, J.E., and Kumar, N. (1975). Amazon cone, morphology, sediments, age, and growth pattern. Geological Society of America Bulletin 86, 863878.2.0.CO;2>CrossRefGoogle Scholar
Guilderson, T.P., Fairbanks, R.G., and Rubenstone, J.L. (1994). Tropical temperature variations since 20,000 years ago: Modulating interhemispheric climate change. Science 263, 663665.CrossRefGoogle Scholar
Haberle, S.G. (1997). Late Quaternary vegetation and climate history of the Amazon Basin: Correlating marine and terrestrial pollen records.Flood, R.D., J. W. Piper, D., Klaus, A., Peterson, L.C. Proceedings of the Ocean Drilling Program, Scientific Results, Amazon Fan Ocean Drilling Program, College Station.381396.Google Scholar
Haffer, J. (1969). Speciation in Amazonian forest birds. Science 165, 131137.CrossRefGoogle ScholarPubMed
Heusser, L.E., and Stock, C.E. (1984). Preparation techniques for concentrating pollen from marine sediments and other sediments with low pollen density. Palynology 8, 225227.CrossRefGoogle Scholar
Hooghiemstra, H. (1984). Vegetation and Climatic History of the High Plain of Bogotá, Colombia: A Continuous Record of the Last 3.5 Million Years. Cramer, Berlin, Stuttgart.Google Scholar
Hoorn, C. (1993). Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynological study. Paleogeography, Paleoclimatology, Paleoecology 105, 267309.CrossRefGoogle Scholar
Hoorn, C. (1997). Palynology of the Pleistocene glacial/interglacial cycles of the Amazon Fan (ODP Leg 155, Holes 940A, 944A, and 946A).Flood, R.D., J. W. Piper, D., Klaus, A., Peterson, L.C. Proceedings of the Ocean Drilling Program, Scientific Results, Amazon Fan Ocean Drilling Program, College Station.Google Scholar
Hoorn, C., Guerrero, J., Sarmiento, G.A., and Lorente, M.A. (1995). Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23, 237240.2.3.CO;2>CrossRefGoogle Scholar
Hope, G., and Tulip, J. (1994). A long vegetation history from lowland Irian Jaya, Indonesia. Paleogeography, Paleoclimatology, Paleoecology 109, 385398.CrossRefGoogle Scholar
Huntley, B., and Birks, H.J.B. (1983). An Atlas of Past and Present Pollen Maps for Europe: 0–13,000 Years Ago. Cambridge Univ. Press, Cambridge.Google Scholar
Iriondo, M., and Latrubesse, E.M. (1994). A probable scenario for dry climate in central Amazonia during the Late Quaternary. Quaternary International 21, 121128.CrossRefGoogle Scholar
Kershaw, A.P., McKenzie, G.M., and McMinn, A. (1993). A Quaternary vegetation history of northeastern Queensland from pollen analysis of ODP Site 820.McKenzie, J.A., Davies, P.J., Palmer-Jones, A. Proceedings of ODP, Scientific Results Ocean Drilling Program, College Station.107114.Google Scholar
Ledru, M.-P. (1993). Late Quaternary environmental and climatic changes in central Brazil. Quaternary Research 39, 9098.CrossRefGoogle Scholar
Ledru, M.-P., Bertaux, J., Sifeddine, A., and Suguio, K. (1998). Absence of last galcial maximum records in lowland tropical forests. Quaternary Research 49, 233237.CrossRefGoogle Scholar
Leyden, B. (1985). Late Quaternary aridity and Holocene moisture fluctuations in the Lake Valencia basin, Venezuela. Ecology 66, 12791295.CrossRefGoogle Scholar
Maslin, M.A., Burns, S., Erlenkeusser, H., and Hohnemann, C. (1997). Stable isotope records from ODP Sites 932 and 933.Flood, R.D., Piper, D.J.W., Klaus, A., Peterson, L.C. Proceedings of the Ocean Drilling Program, Scientific Results, Amazon Fan Ocean Drilling Program, College Station.305318.Google Scholar
Meade, R.H. (1994). Suspended sediments of the modern Amazon and Orinoco rivers. Quaternary International 21, 2939.CrossRefGoogle Scholar
Mikkelsen, N., Maslin, M., Giraudeau, J., and Showers, W. (1997). Biostratigraphy and sedimentation rates of the Amazon Fan. Biostratigraphy and sedimentation rates of the Amazon Fan.Flood, R.D., Piper, D.J.W., Klaus, A., Peterson, L.C. Proceedings of the Ocean Drilling Program, Scientific Results, Amazon Fan Ocean Drilling Program, College Station.Google Scholar
Milliman, J.D., and Meade, R.H. (1983). Word-wide delivery of river sediment to the oceans. Journal of Geology 91, 121.CrossRefGoogle Scholar
Milliman, J.D., Summerhayes, C.P., and Barretto, H.T. (1975). Quaternary sedimentation on the Amazon continental margin: A model. Geological Society of America Bulletin 86, 610614.2.0.CO;2>CrossRefGoogle Scholar
Mommersteeg, H. (1998). Vegetation Development and Cyclic and Abrupt Climatic Changes During the Late Quaternary: Palynological Evidence from the Colombian Eastern Cordillera. University of AmsterdamHugo de Vries Laboratory, Google Scholar
Müller, J., Irion, G., Nunes de Mello, J., and Junk, W. (1995). Hydrological changes of the Amazon during the last glacial–interglacial cycle in Central Amazonia (Brazil). Naturwissenschften 82, 232235.CrossRefGoogle Scholar
Nittrouer, C.A., Kuehl, S.A., Sternberg, R.W., Figueiredo, A.G. Jr., and Faria, L.E.C. (1995). An introduction to the geological significance of sediment transport and accumulation on the Amazon continental shelf. Marine Geology 125, 177192.CrossRefGoogle Scholar
Piperno, D.R., Bush, M.B., and Colinvaux, P.A. (1990). Paleoenvironments and human occupation in late-glacial Panama. Quaternary Research 33, 108116.CrossRefGoogle Scholar
Prance, G.T. (1987). Vegetation.Whitemore, T.C., Prance, G.T. Biogeography and Quaternary History in Tropical America Oxford Science Publications, Oxford.2844.Google Scholar
Räsänen, M.E., Salo, J.S., and Jungner, H. (1991). Holocene floodplain lake sediments in the Amazon:14 . Quaternary Science Reviews 10, 363372.CrossRefGoogle Scholar
Rind, D. (1986). The dynamics of warm and cold climates. Journal of the Atmospheric Sciences 43, 324.2.0.CO;2>CrossRefGoogle Scholar
Roosevelt, A.C. (1991). Moundbuilders of the Amazon: Geophysical Archaeology on Marajó Island, Brazil. Academic Press, San Diego.Google Scholar
Salo, J. (1987). Pleistocene forest refuges in the Amazon: Evaluation of the biostratigraphical, lithostratigraphical and geomorphological data. Ann. Zool. Fenn. 24, 203211.Google Scholar
Sarnthein, M., Winn, K., Jung, S.J.A., Duplessy, J.-C., Labeyrie, L., Erlenkeuser, H., and Gansen, G. (1994). Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography 9, 209268.CrossRefGoogle Scholar
Showers, W.J., and Bevis, M. (1988). Amazon cone isotopic stratigraphy: Evidence for the source of the tropical freshwater spike. Paleogeography, Paleoclimatology, Paleoecology 64, 189199.CrossRefGoogle Scholar
Sifeddine, A., Fröhlich, F., Fournier, M., Martin, L., Servant, M., Soubiès, F., Turcq, B., Suguio, K., and Volmer-Ribeiro, C. (1994). La sédimentation lacustre indicateur de changements des paléoenvironnements au cours des 30 000 dernières années (Carajas, Amazonie, Brésil). Comptes Rendus de l'Académie des Sciences Paris, Série II 318, 16451652.Google Scholar
Stanley, E.A. (1996). The problem of reworked pollen and spores in marine sediments. Marine Geology 4, 397408.CrossRefGoogle Scholar
Street-Perrot, F.A., Huang, Y., Perrott, R.A., Eglinton, G., Barker, P., Khelifa, L.B., Harkness, D.D., and Olago, D.O. (1997). Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278, 1422 CrossRefGoogle Scholar
Stow, D.A.W., Howell, D.G., and Nelson, H.C. (1985). Sedimentary, tectonic, and sea-level controls.Bouma, A.H., Normark, W.R., Barnes, N.E. Submarine Fans and Related Turbidite Systems Springer-Verlag, New York.1522.CrossRefGoogle Scholar
Stuiver, M., and Reimer, P.J. (1993). Extended14 . Radiocarbon 35, 215230.CrossRefGoogle Scholar
Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J.F., Schlosser, P., Broecker, W.S., and Bonani, G. (1995). Cooling of lowland tropical Brazil (5°C) during the last glacial maximum. Science 269, 379383.CrossRefGoogle ScholarPubMed
van der Hammen, T., and Absy, M.L. (1994). Amazonia during the last glacial. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 247261.CrossRefGoogle Scholar
van der Hammen, T., Duivenvoorden, J.F., Lips, J.M., Urrego, L.E., and Espejo, N. (1992). Late Quaternary of the middle Caquetá River area (Colombian Amazonia). Journal of Quaternary Science 7, 4555.CrossRefGoogle Scholar
van't Veer, R., Ran, E.T.H., Mommersteeg, H.J.P.M., and Hoogheimstra, H. (1995). Multivariate analysis of the middle and late Pleistocene Funza pollen records of Colombia. Mededelingen Rijks Geologische Dienst 52, 195212.Google Scholar
Wijmstra, T.A., and van der Hammen, T. (1966). Palynological data on the history of tropical savannas in Northern South America. Leidse Mededelingen 38, 7190.Google Scholar
155
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Late Quaternary Vegetation and Climate Change in the Amazon Basin Based on a 50,000 Year Pollen Record from the Amazon Fan, ODP Site 932
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Late Quaternary Vegetation and Climate Change in the Amazon Basin Based on a 50,000 Year Pollen Record from the Amazon Fan, ODP Site 932
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Late Quaternary Vegetation and Climate Change in the Amazon Basin Based on a 50,000 Year Pollen Record from the Amazon Fan, ODP Site 932
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *