Skip to main content Accessibility help
Hostname: page-component-747cfc64b6-nvdzj Total loading time: 0.248 Render date: 2021-06-16T13:13:10.111Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Implications of Stratigraphic and Paleoclimatic Records of the Last Interglaciation from the Nordic Seas

Published online by Cambridge University Press:  20 January 2017

Henning A. Bauch
GEOMAR, Research Center for Marine Geosciences at Christian-Albrechts-Universität, Wischhofstrasse 1-3, 24148, Kiel, Germany
Helmut Erlenkeuser
Leibniz Laboratory, Christian-Albrechts-Universität, Max-Eyth-Strasse 11, 24098, Kiel, Germany
Pieter M. Grootes
Leibniz Laboratory, Christian-Albrechts-Universität, Max-Eyth-Strasse 11, 24098, Kiel, Germany
Jean Jouzel
Laboratoire de Modélisation du Climat et de l'Environnement, DSM-Bat 522, CEN Saclay, 91191, Gif/Yvette Cédex, France


Climatic reconstruction of glacial to interglacial episodes from oxygen isotopes in sediment cores from the Nordic seas is complicated by strong local meltwater contributions to the oxygen isotope changes. Combination of benthic and planktic foraminiferal isotope data with foraminiferal abundances and ice-rafted debris (IRD) allows separation of local and global effects and subdivision of the marine oxygen isotope events 6.2–5.4, which include the last interglaciation, into: (1) a meltwater phase after glacial stage 6, recorded by large amounts of IRD and low foraminiferal abundance, indicating surface water warming; (2) an IRD-free period with high deposition rates of subpolar foraminifera and other CaCO3 pelagic components, recognized here as the “full” interglaciation; and (3) a phase with the recurrence of IRD and the demise of subpolar species. Comparison of ice-core records and marine data implies that the global climate during the last full interglaciation and that during the postdeglacial Holocene were similar. The records show no significantly different variations in the proxy data. In contrast, the oxygen isotopes of planktic foraminifera and ice cores indicate significant differences during each of the deglacial transitions (Terminations I and II) that preceded these two interglaciations. These suggest that during Termination II the climatic evolution in the Nordic seas was less affected by abrupt changes in ocean–atmosphere circulation than during the last glacial to interglacial transition.

Research Article
University of Washington

Access options

Get access to the full version of this content by using one of the access options below.


Andersen, B. G., (1980). The deglaciation of Norway after 10,000 BP. Boreas 9, 211216.CrossRefGoogle Scholar
Bard, E., Arnold, M., Fairbanks, R.G., and Hamelin, B., (1993). 230Th–234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35, 191199.CrossRefGoogle Scholar
Bauch, H. A., (1996). Monitoring Termination II at high latitude: Anomalies in the planktic record. Marine Geology 131, 98102.CrossRefGoogle Scholar
Baumann, K.H., Lackschewitz, K.S., Mangerud, J., Spielhagen, R.F., Wolf-Welling, T. C.W., Henrich, R., and Kassens, H., (1995). Reflections of Scandinavian ice sheet fluctuations in Norwegian sea sediments during the past 150,000 years. Quaternary Research 43, 185197.CrossRefGoogle Scholar
Bender, M., Sowers, S., Dickson, M.-L., Orchardo, J., Grootes, P., Mayew-ski, P., and Meese, D., (1994). Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature 372, 663666.CrossRefGoogle Scholar
Böcher, J., and Bennike, O., (1991). Interglacial land biotas of Jameson Land, East Greenland. Lundqua Report 33, 129136.Google Scholar
Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., and Ivy, S., (1992). Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, 245249.CrossRefGoogle Scholar
Broecker, W.S., and Denton, G. H., (1989). The role of ocean–atmosphere reorganizations in glacial cycles. Geochimica et Cosmochimica 53, 24652501.CrossRefGoogle Scholar
Chappellaz, J., Brook, E., Blunier, T., and Malaize´, B., (in press). CH4 and δ18O of O2 records from Greenland ice: A clue for stratigraphic disturbance in the bottom part of the GRIP and GISP2 ice-cores. Journal of Geophysical Research.Google Scholar
Chen, J.H., Curran, H.A., White, B., and Wasserburg, G. J., (1991). Precise chronology of the last interglacial period, 234U–230Th data from fossil coral reefs in the Bahamas. Geological Society American Bulletin 103, 8297.2.3.CO;2>CrossRefGoogle Scholar
Cortijo, E., Duplessy, J., Labeyrie, L., Leclaire, H., Duprat, J., and van Weering, T., (1994). Eeman cooling in the Norwegian Sea and North Atlantic ocean preceding continental ice-sheet growth. Nature 372, 446449.CrossRefGoogle Scholar
Duplessy, J.-C., and Shackleton, N. G., (1985). Response of global deep-water circulation to the Earth's climatic changes 135,000–107,000 years ago. Nature 316, 500507.CrossRefGoogle Scholar
Fairbanks, R. G., (1989). A 17,000-year glacio-eustatic sea level record, influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342, 637642.CrossRefGoogle Scholar
Gallup, C.D., Edwards, R.L., and Johnson, R. G., (1994). The timing of high sea levels over the past 200,000 years. Science 263, 796800.CrossRefGoogle ScholarPubMed
GRIP Members (1993). Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364, 203207.CrossRefGoogle Scholar
Grootes, P.M., Stuiver, M., White, J. W. C, Johnsen, S., and Jouzel, J., (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554.CrossRefGoogle Scholar
Guiot, J., de Beaulieu, J., Chedaddi, R., David, F., Ponel, P., and Reille, M., (1993). The climate in western Europe during the last glacial/intergla-cial cycle derived from pollen and insects remains. Palaeogeography, Palaeoclimatology, Palaeoecology 103, 7393.CrossRefGoogle Scholar
Haake, F.W., and Pflaumann, U., (1989). Late Pleistocene foraminiferal stratigraphy on the Vøring Plateau, Norwegian Sea. Boreas 18, 343356.CrossRefGoogle Scholar
Healy-Williams, N., (1992). Stable isotope differences among morphotypes of Neogloboquadrina pachyderma (Ehrenberg), implications for high-latitude palaeoceanographic studies. Terra Nova 4, 693700.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., and Anderson, O.R., (1989). “Modern Plank-tonic Foraminifera.” Springer, New York.Google Scholar
Henrich, R., (1992). “Beckenanalyse des Europäischen Nordmeeres, Pela-gische und glaziomarine Sedimenteinflüsse im Zeitraum 2.6 Ma bis re-zent.” Unpublished habilitation, University of Kiel.Google Scholar
Henrich, R., Kassens, H., Vogelsang, E., and Thiede, J., (1989). Sedimentary facies of glacial/interglacial cycles in the Norwegian Sea during the last 350 ka. Marine Geology 86, 283319.CrossRefGoogle Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A. C, Morley, J.J., Pisias, N.G., Prell, W.L., and Shackleton, N. J., (1984). The orbital theory of Pleistocene climate: Support from a revised chronology of the marine 18O record. In “Milankovitch and Climate, Part I” (Berger, A., et al., Eds.), pp. 269305. Reidel, Dordrecht.Google Scholar
Imbrie, J., Berger, A., Boyle, E., A., Clemens, S. C, Duffy, A., Howard, W., R., Kukla, G., Kutzbach, J., Martinson, D., G., McIntyre, A., Mix, A. C, Molfino, B., Morley, J., J., Peterson, L. C, Pisias, N., G., Prell, W., L., Raymo, M., E., Shackleton, N., J., and Toggweiler, J. R. (1993). On the structure and origin of major glaciation cycles. 2. The 100,000-year cycle. Paleoceanography 8, 699735.CrossRefGoogle Scholar
Johnsen, S.J., and Dansgaard, W., (1992). On flow model dating of stable isotope records from Greenland ice cores. In “The Last Deglaciation, Absolute and Radiocarbon Chronologies” (Bard, E., and Broecker, W., Eds.), pp. 1324. Springer, Berlin.Google Scholar
Jones, G.A., and Keigwin, L. D., (1988). Evidence from Fram Strait (78°) for early deglaciation. Nature 336, 5659.CrossRefGoogle Scholar
Jouzel, J., (1994). Ice cores north and south. Nature 372, 612613.CrossRefGoogle Scholar
Jouzel, J., Barkov, N.I., Barnola, J.M., Bender, M., Chappellaz, J., Gen-thon, C., Kotlyakov, V.M., Lipenkov, V., Lorius, C., Petit, J.R., Raynaud, D., Raisbeck, G., Ritz, C., Sowers, T., Stievenard, M., Yiou, F., and Yiou, P., (1993). Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature 364, 407412.CrossRefGoogle Scholar
Kassens, H., (1990). Verfestigte Sedimentlagen und seismische Reflektoren, Fru¨hdiagenese und Palao-Ozeanographie in der Norwegischen See. Report SFB 313, Kiel University 24. Google Scholar
Keigwin, L., Curry, W., Lehman, S., and Johnsen, S., (1994). The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago. Nature 371, 323326.CrossRefGoogle Scholar
Kellogg, T. B., (1980). Paleoclimatology and paleoceanography of the Nor-wegian and Greenland Seas: Glacial–interglacial contrasts. Boreas 9, 115137.CrossRefGoogle Scholar
Koç, N., Jansen, E., and Haflidason, H., (1993). Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian Seas through the last 14 ka based on diatoms. Quaternary Science Reviews 12, 115140.CrossRefGoogle Scholar
Larsen, E., Sejrup, H., Johnson, S., and Knudsen, K., (1995). Do Greenland ice cores reflect NW European interglacial climate Variations? Quaternary Research 43, 125132.CrossRefGoogle Scholar
Lehman, S.L., and Keigwin, L. D., (1992). Sudden changes in North Atlantic circulation during the last deglaciaton. Nature 356, 757762.CrossRefGoogle Scholar
Letréguilly, A., Reeh, N., and Huybrechts, P., (1991). The Greenland ice sheet through the last glacial–interglacial cycle. Global and Planetary Change 4, 385394.CrossRefGoogle Scholar
Mangerud, J., (1989). Correlation of the Eemian and the Weichselian with deep sea oxygen isotope stratigraphy. Quaternary International 3/4, /1/2.CrossRefGoogle Scholar
Mangerud, J., Lies, S.E., Furnes, H., Kristiansen, I.L., and Lømo, L., (1984). Younger Dryas ash bed in Western Norway, with possible correlations to the Norwegian Sea and the North Atlantic. Quaternary Research 21, 85104.CrossRefGoogle Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., and Shackleton, N. J., (1987). Age dating and the orbital theory of the Ice Ages: Development of a high-resolution 0 to 300,000 years chronostratig-raphy. Quaternary Research 27, 129.CrossRefGoogle Scholar
McManus, J., Bond, G., Broecker, W., Johnsen, S., Labeyrie, L., and Hig-gins, S., (1994). High-resolution climate records from the North Atlantic during the last interglacial. Nature 371, 326329.CrossRefGoogle Scholar
Meese, D., Alley, R., Gow, T., Grootes, P.M., Mayewski, P., Ram, M., Taylor, K., Waddington, E., and Zielinski, G., (1994). Preliminary depth-age scale of the GISP2 ice core. CRREL Special Report 9 /1/2.Google Scholar
Nesje, A., and Kvamme, M., (1991). Holocene glacier and climate variations in western Norway: Evidence for early Holocene glacier demise and multiple neoglacial events. Geology 19, 610612.2.3.CO;2>CrossRefGoogle Scholar
Paterson, W., Koerner, R., Fisher, D., Johnsen, S., Clausen, H., Dansgaard, W., Bucher, P., and Oeschger, H., (1977). An oxygen-isotope climatic record from the Devon Island ice cap, Arctic Canada. Nature 266, 508511.CrossRefGoogle Scholar
Reynolds-Sautter, L., and Thunell, R. C., (1989). Seasonal succession of planktonic foraminifera: Results from a four-year time-series sediment trap experiment in the northeast Pacific. Journal of Foraminiferal Research 19, 253267.CrossRefGoogle Scholar
Ruddiman, W.F., and McIntyre, A., (1981). The North Atlantic Ocean during the last deglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 35, 145214.CrossRefGoogle Scholar
Sarnthein, M., and Tiedemann, R., (1990). Younger Dryas-style cooling events at glacial Terminations I-VI at ODP-Site 658: Associated benthic d13C anomalies constrain meltwater hypothesis. Paleoceanography 5, 10411055.CrossRefGoogle Scholar
Sarnthein, M., Jansen, E., Weinelt, M., Arnold, M., Duplessy, J.-C, Erlen-keuser, H., Flatøy, A., Johannessen, G., Johannessen, T., Jung, S., Ko¸c, N., Labeyrie, L., Maslin, M., Pflaumann, U., and Schulz, H., (1995). Variations in Atlantic surface ocean paleoceanography, 50°-80°N: A time-slice record of the last 30,000 years. Paleoceanography 10, 10631094.CrossRefGoogle Scholar
Sejrup, H.P., Haflidason, H., Klitgaard-Kristensen, D., and Johnsen, S., (in press). Last interglacial and Holocene climatic development in the Norwegian Sea region: Oceanic front movements and ice core data. Journal of Quaternary Science.Google Scholar
Thompson, L., Mosley-Thompson, E., Davis, M., Lin, P.-N., Henderson, K., Cole-Dai, J., Bolzan, J., and Liu, K.-B., (1995). Late glacial stage and Holocene tropical ice core records from Huascarán, Peru. Science 269, 4650.CrossRefGoogle ScholarPubMed
Thouveny, N., de Beaulieu, J.-L., Bonifay, E., Creer, K.M., Guiot, J., Icole, M., Johnsen, S., Jouzel, J., Reille, M., Williams, T., and Williamson, D., (1994). Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature 371, 503506.CrossRefGoogle Scholar
Veum, T., Jansen, E., Arnold, M., Beyer, I., and Duplessy, J.-C., (1992). Water mass exchange between the North Atlantic and the Norwegian Sea during the past 28,000 years. Nature 356, 783785.CrossRefGoogle Scholar
Vogelsang, E., (1990). Pälao-Ozeanographie des Europäischen Nordmeeres anhand stabiler Kohlenstoff-und Sauerstoffisotope. Report SFB 313, Kiel University 23.Google Scholar
Waelbroeck, C., Jouzel, J., Labeyrie, L., Lorius, C., , Labracherie, M., Stiéven-ard, M., and Barkov, N., (1995). A comparison of the Vostok ice deuterium record and series from Southern Ocean core MD 88–770 over the last two glacial-interglacial cycles. Climate Dynamics 12, 113123.CrossRefGoogle Scholar
Williams, K. M., (1993). Ice sheet and ocean interactions at the margin of the East Greenland ice sheet (14ka to present): Diatom evidence. Paleoceanography 8, 6983.CrossRefGoogle Scholar
Williams, K.M., Andrews, J.T., Weiner, N.J., and Mudie, P. J., (1995). Late Quaternary paleoceanography of the mid- to outer continental shelf, East Greenland. Arctic and Antarctic Research 27, 352363.CrossRefGoogle Scholar
Winograd, I.J., Coplen, T.B., Landwehr, J.M., Riggs, A. C, Ludwig, K.R., Szabo, B.J., Kolesar, P.T., and Revesz, M., (1992). Continuous 500.000-year climate record from Vein Calref in Devils Hole, Nevada. Science 258, 255260.CrossRefGoogle ScholarPubMed
Zagwijn, W. H., (1961). Vegetation, climate and radiocarbon dating in the late Pleistocene of the Netherlands. I. Eemian and Early Weichselian. Mededeelingen Geologische Stichting 14, 1545.Google Scholar
Zagwijn, W. H., (1983). Sea-level changes in the Netherlands during the Eemian. Geologie en Mijnbouw 62, 437450.Google Scholar
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Implications of Stratigraphic and Paleoclimatic Records of the Last Interglaciation from the Nordic Seas
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Implications of Stratigraphic and Paleoclimatic Records of the Last Interglaciation from the Nordic Seas
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Implications of Stratigraphic and Paleoclimatic Records of the Last Interglaciation from the Nordic Seas
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *