Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-lgdn2 Total loading time: 0.213 Render date: 2021-10-26T16:13:14.148Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The Iberian–Roman Humid Period (2600–1600 cal yr BP) in the Zoñar Lake varve record (Andalucía, southern Spain)

Published online by Cambridge University Press:  20 January 2017

Celia Martín-Puertas*
Affiliation:
Departamento de Ciencias de la Tierra-CASEM, University of Cádiz. Avd. Saharaui s/n Puerto Real E-11510 Cádiz, Spain
Blas L. Valero-Garcés
Affiliation:
Instituto Pirenaico de Ecología-CSIC, Apdo 202, E-50080 Zaragoza, Spain
Achim Brauer
Affiliation:
GeoForschungsZentrum Potsdam, Section 3.3, Climate Dynamics and Sediments, Telegrafenberg, D-14473 Potsdam, Germany
M. Pilar Mata
Affiliation:
Departamento de Ciencias de la Tierra-CASEM, University of Cádiz. Avd. Saharaui s/n Puerto Real E-11510 Cádiz, Spain
Antonio Delgado-Huertas
Affiliation:
Departamento de Ciencias de la Tierra y Química Ambiental, Estación Experimental del Zaidín-CSIC, E-18008 Granada, Spain
Peter Dulski
Affiliation:
GeoForschungsZentrum Potsdam, Section 3.3, Climate Dynamics and Sediments, Telegrafenberg, D-14473 Potsdam, Germany
*
Corresponding author. Fax: +34 956016195. E-mail address: celia.martin@uca.es

Abstract

The Iberian–Roman Humid Period (IRHP, 2600–1600 cal yr BP), is the most humid phase of the last 4000 yr in southern Spain as recorded in the sedimentary sequence of Zoñar Lake (37°29′00″N, 4°41′22″ W, 300 m a.s.l.). A varve chronology supported by several AMS 14C dates allows study of the lake evolution at annual scale in response to human impact and climate changes. There are four climate phases within this period: i) gradual transition (2600–2500 yr ago, 650–550 BC) from a previous arid period; ii) the most humid interval during the Iberian–Early Roman Epoch (2500–2140 yr ago, 550–190 BC); iii) an arid interval during the Roman Empire Epoch (2140–1800 yr ago, 190 BC AD 150); and iv) a humid period synchronous with the decline of the Roman Empire (1800–1600 yr ago, AD 150–350). Varve thickness and geochemical proxies show a multi-decadal cyclicity similar to modern North Atlantic Oscillation (NAO) (60, 20 years) and solar variability cycles (11 yr). The timing and the structure of this humid period is similar to that described in Eastern Mediterranean and northern European sites and supports the same large-scale climate control for northern latitudes and the Mediterranean region.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaby, B. Cyclic climatic variations in climate over the past 5,500 yr reflected in raised bogs. Nature 263, (1976). 281284.CrossRefGoogle Scholar
Audino, M., Grice, K., Alexander, R., Bareham, C.J., and Kagi, R.I. An unusual distribution of monomethylalkanes in Botryococcus braunii-rich sediments. Their origin and significance. Geochimica et Cosmochimica Acta 12, (2001). 19952006.CrossRefGoogle Scholar
Baier, J., Lücke, A., Negendank, J.F.W., Schleser, G.H., and Zolitschka, B. Diatom and geochemical evidence of mid- to late Holocene climatic changes at Lake Holzmaar, West-Eifel (Germany). Quaternary International 113, (2004). 8196.CrossRefGoogle Scholar
Baroni, C., Zanchetta, G., Fallick, A.E., and Longinelli, A. Mollusca stable isotope record of a core from Lake Frassino, northern Italy: hydrological and climate changes during the last 14 ka. The Holocene 16, (2006). 827837.CrossRefGoogle Scholar
Beer, J., Siegenthaler, U., Bonani, G., Finkel, R.C., Oeschger, H., Sutter, M., and Wölfli, W. Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core. Nature 331, (1998). 675679.CrossRefGoogle Scholar
Bermejo, J. Breve Historia de los Iberos. (2007). Imprenta Fareso, Madrid.Google Scholar
Bond, G., and Lotti, R. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267, (1995). 10051010.CrossRefGoogle Scholar
Brauer, A. Annually laminated sediments and their paleoclimate relevance. Fischer, H., Kumke, T., Lohmann, G., Flöser, G., Miller, H., von Storch, H., and Negendank, J.F.W. The Climate in Historical Times. Towards a Synthesis of Holocene Proxy Data and Climate Models. (2004). Springer Verlag, 111129.Google Scholar
Brauer, A., and Casanova, J. Chronology and depositional processes of the laminated sediment record from Lac d'Annecy, French Alps. Journal of Paleolimnology 25, (2001). 163177.CrossRefGoogle Scholar
Brauer, A., Mangili, C., Moscariello, A., and Witt, A. Palaeoclimatic implications from micro-facies data of a 5900 varve time series from the Pianico interglacial sediment record, Southern Alps. Palaeogeography Palaeoclimatology, Palaeoecology, 259, (2008). 121135.CrossRefGoogle Scholar
Cane, R.F. The origin and formation of oil shale. Yen, T.F., and Chilingarian, G.V. Oil Shale. (1976). Developments in Petroleum Science, Elserviver, Amsterdam. 2760.Google Scholar
Caroli, I., and Caldara, M. Vegetation history of Lago Battaglia (eastern Gargano coast, Apulia, Italy) during the middle-late Holocene. Vegetation History and Archaebotany 16, (2007). 317327.CrossRefGoogle Scholar
Carrión, J., Fuentes, N., González-Sampériz, P., Sánchez Quirante, L., Finlaysson, C., Fernández, S., and Andrade, A. Holocene environmental change in a montane region of southern Europe with a long history of human settlement. Quaternary Science Reviews 26, (2007). 14551475.CrossRefGoogle Scholar
Chapa Brunet, T. Iron age Iberian sculptures as territorial markers: the Córdoba example (Andalusía). European Journal of Archaelogy 1, (1998). 7190.Google Scholar
Cohen, A.S. Paleolimnology. The History and Evolution of Lake Systems. (2003). Oxford University Press, Oxford.Google Scholar
De La Torre, L., Gimeno, L., Añel, J.A., and Nieto, R. The role of the solar cycle in the relationship between the North Atlantic Oscillation and Northern Hemisphere surface temperatures. Advances in Atmospheric Sciences 24, (2007). 191198.CrossRefGoogle Scholar
Delworth, T.L., and Greatbatch, R.J. Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. Journal of Climate 13, (2000). 14811495.2.0.CO;2>CrossRefGoogle Scholar
Desprat, S., Sanchez Goñi, M.F., and Lourre, M.F. Revealing climate variability of the last three millennia in northwestern Iberia using pollen influx data. Earth and Planetary Science Letters 213, (2003). 6378.CrossRefGoogle Scholar
Enadimsa Estudio hidrogeológico de la Laguna de Zoñar. Junta de Andalucía. (1989). Agencia de Medio Ambiente, Sevilla.Google Scholar
Ferrio, J.P., Alonso, N., López, J.B., Araus, J.L., and Voltas, J. Carbon isotope composition of fossil charcoal reveals aridity changes in the NW Mediterranean Basin. Global Change Biology 12, (2006). 114.CrossRefGoogle Scholar
Gil-García, M.J., Ruiz Zapata, M.B., Santisteban, J.I., Mediavilla, R., López-Pamo, E., and Dabrio, C.J. Late Holocene environments in Las Tablas de Daimiel (south central Iberian peninsula, Spain). Vegetation History Archaeobotany 16, (2007). 241250.CrossRefGoogle Scholar
Giraudi, C. Late Pleistocene and Holocene lake-level variations in Fucino Lake (Abruzzo, central Italy) inferred from geological archaeological and historical data. Harrison, S.P., Frenzel, B., Huckried, U., and Weiss, M. Palaeohydrology as Reflected in Lake-Level Changes as Climatic Evidence for Holocene Times, Palaoklimaforschung. (1998). 117.Google Scholar
Giraudi, C. Le oscillazioni di livello del Lago di Mezzano (Valentino-VT): variazioni climatiche e interventi antropici. Il Quaternario 17, (2004). 221230.Google Scholar
Grice, K., Schouten, S., Blokker, P., Derenne, S., Largeau, C., Nissenbaum, A., and Sinninghe Damste, J.S. Structural and isotopic analysis of kerogens in sediments rich in free sulfurised Botryococcus braunii biomarkers. Organic Geochemistry 34, (2003). 471482.CrossRefGoogle Scholar
Gutierrez-Elorza, M., and Peña-Monné, J.L. Geomorphology and late Holocene climate change in northeastern Spain. Geomorphology 23, (1998). 205217.CrossRefGoogle Scholar
Heim, C., Nowczyk, N.R., and Negendank, J.F.W. Near east desertification: evidence from the Dead Sea. Naturwissenschaften 84, (1997). 398401.CrossRefGoogle Scholar
Issar, A.S. Climate Changes During the Holocene and their Impact on Hydrological Systems. (2003). Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Jones, M.D., Roberts, C.N., Leng, M.J., and Türkes, M. A high-resolution late Holocene lake isotope record from Turkey and links to North Atlantic and monsoon climate. Geology 34, (2006). 361364.CrossRefGoogle Scholar
Juliá, R., Burjachs, F., Dasí, M.J., Mezquita, F., Miracle, J.R., Roca, G., Seret, G., and Vicente, E. Meromixis origin and recent trophic evolution in the Spanish mountain lake La Cruz. Aquatic Sciences 60, (1998). 279299.CrossRefGoogle Scholar
Kelts, K., and Hsü, K.J. Freshwater carbonate sedimentation. Lerman, A. Lakes: Chemistry, Geology, Physics. (1978). Springer-Verlag, New York. 295325.Google Scholar
Komárek, J., and Marvan, P. Morphological differences in natural populations of the genus Botryococcus (Chlorophuceae). Arch. Protistenkd 141, (1992). 65100.CrossRefGoogle Scholar
Labat, D. Oscillations in land surface hydrological cycle. Earth and Planetary Science Letters 242, (2006). 143154.CrossRefGoogle Scholar
Lamb, H.F., Gasse, F., Benkaddour, A., El Homauti, N., van der Kaars, S., Perkins, W.T., Pearce, N.J., and Roberts, C.N. Relation between century-scale Holocene arid intervals in tropical and temperature zones. Nature 373, (1995). 134137.CrossRefGoogle Scholar
Last, W.M. Deep-water evaporate mineral formation in lakes of Western Canada. Renaut, R.W., and Last, W.M. Sedimentology and Geochemistry of Modern and Ancient Saline Lakes. Soc. Econ. Paleo. Mineral. Spec. Publ. 50, (1994). 5159.Google Scholar
Leng, M.J., and Marshall, J.D. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews 23, (2004). 811831.CrossRefGoogle Scholar
Li, H.-C., and Ku, T.-L. δ13C-δ18O covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 133, (1997). 6980.CrossRefGoogle Scholar
Luterbacher, J., Xoplaki, E., Casty, C., Wanner, H., Pauling, A., Küttel, M., Rutishauser, T., Brönnimann, S., Fischer, E., Fleitmann, D., González-Rouco, F.J., García-Herrera, R., Barriendos, M., Rodrigo, F., Gonzalez-Hidalgo, J.C., Saz, M.A., Gimeno, L., Ribera, P., Brunet, M., Paeth, H., Rimbu, N., Felis, T., Jacobeit, J., Dünkeloh, A., Zorita, E., Guiot, J., Türkes, M., Alcoforado, M.J., Trigo, R., Wheeler, D., Tett, S., Mann, M.E., Touchan, R., Shindell, D.T., Silenz, S., Montagna, P., Camuffo, D., Mariotti, A., Nanni, T., Brunetti, M., Maugeri, M., Zerefos, C., De Zolt, S., and Lionello, P. Mediterranean climate variability over the last centuries: a review. Lionello, P., Malanotte-Rizzoli, P., and Boscolo, R. The Mediterranean Climate: An Overview of the Main Characteristics and Issues. (2006). Elsevier, Amsterdam. 27148.Google Scholar
Macklin, M.G., Benito, G., Gregory, K.J., Johnstone, E., Lewin, J., Michczyńska, D.J., Soja, R., Starkel, L., and Thorndycraft, V.R. Past hydrological events reflected in the Holocene fluvial record of Europe. Catena 66, (2006). 145154.CrossRefGoogle Scholar
Magny, M., Miramont, C., and Sivan, O. Assessment of impact of climate and anthropogenic factors on Holocene Mediterranean vegetation in Europe on the basis of paleohydrological records. Paleogeography, Paleoclimatology, Paleoecology 186, (2002). 4759.CrossRefGoogle Scholar
Magny, M., de Beaulieu, J.-L., Drescher-Schneider, R., Vannière, B., Walter-Simonnet, A.-V., Miras, Y., Millet, L., Bossuet, G., Peyron, O., Brugiapaglia, E., and Leroux, A. Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quaternary Science Reviews 26, (2007). 17361758.CrossRefGoogle Scholar
Martín-Puertas, C., Valero-Garcés, B.L., Mata, M.P., González-Sampériz, P., Bao, R., Moreno, A., and Stefanova, V. Arid and humid phases in the southern Spain during the last 4000 years: the Zoñar Lake record, Córdoba. The Holocene 18, (2008). 907921.CrossRefGoogle Scholar
Maxwell, J.R., Douglas, A.G., Eglinton, G., and McCormick, A. The Botyococcenes-hydrocarbons of novel structure from the alga Botryocuccus Braunii, Kützong. Phytochemistry 7, (1968). 21572171.CrossRefGoogle Scholar
McCrea, J.M. On the isotopic chemistry of carbonates and palaeo-temperature scale. Journal of Chemical Physics 18, (1950). 849857.CrossRefGoogle Scholar
McKenzie, J.A. Carbon-13 cycle in Lake Greifen: a model for restricted ocean basins. Schlanger, S.O., and Cita, M. Nature and Origins of Cretaceous Carbon-Rich Facies. (1982). Academic, 197208.Google Scholar
Moya, J.L. Análisis del hidrograma del manantial deZoñar. Oxyura 3, (1986). 2933.Google Scholar
Myrbo, A., and Shapley, M.D. Seasonal water-column dynamics of dissolved inorganic carbon stable isotopic compositions (δ13CDIC) in small hardwater lakes in Minnesota and Montana. Geochimica et Cosmochimica Acta 70, (2006). 26992714.CrossRefGoogle Scholar
Neumann, T., Stögbauer, A., Walpersdorf, E., Stüben, D., and Kunzendorf, H. Stable isotopes in recent sediments of Lake arendsee, NE Germany: response to eutrophication and remediation measures. Palaeogeography, Palaeoclimatology, Palaeoecology 178, (2002). 7590.CrossRefGoogle Scholar
Paepe, L. Landscape changes in Greece as a result of changing climate during the Quaternary in Desertification in Europe. Fantechi, R., and Margaris, X. Proceedings of the International Symposium in the EEC Programme on Climatology. (1984). Reidel, Doudrecht. 225.Google Scholar
Reale, O., and Dirmeyer, P. Modeling the effects of vegetation on Mediterranean climate during the Roman Classical Period. Part I: climate history and model sensitivity. Global and Planetary Change 25, (2000). 163184.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Chanda, J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southton, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 Terrestrial radiocarbon age calibration, 0–26 cal Kyr BP. Radiocarbon 46, (2004). 10291058.CrossRefGoogle Scholar
Roberts, N., Stevenson, A.C., Davis, B., Cheddadi, R., Brewer, S., and Rosen, A. Holocene climate, environment and cultural change in the circum-Mediterranean region. Battarbee, R.W., Gasse, F., and Stickley, C. Past Climate Variability Through Europe and Africa (PAGES PEPIII conference volume). (2004). Kluwer, Dordrecht. 343362.Google Scholar
Rodrigo, M.A., Miracle, M.R., and Vicente, E. The meromictic Lake La Cruz (central Spain). Pattern of stratification. Aquatic Sciences 63, (2001). 406416.CrossRefGoogle Scholar
Romero-Viana, L., Julià, R., Camacho, A., Vicente, E., and Miracle, M.R. Climate signal in varve thickness: Lake La Cruz (Spain), a case study. Journal of Paleolimnology 40, (2008). 703714.CrossRefGoogle Scholar
Sánchez, M., Fernández-Delgado, C., and Sánchez-Polaina, F.J. Nuevos datos acerca de la morfometría y batimetría de la laguna de Zoñar (Aguilar de la Frontera, Córdoba). Oxyura 6, (1992). 7377.Google Scholar
Schulz, M., and Stattegger, K. SPECTRUM: spectral analysis of unevenly spaced paleoclimatic time series. Computers and Geosciences 23, (1997). 929945.CrossRefGoogle Scholar
Smoot, J.P., and Lowenstein, T.K. Depositional environments of nonmarine evaporites. Melvin, J.L. Evaporites, Petroleum and Mineral Resources. Development in Sedimentology 50, (1991). Elservier, Amsterdam. 189347.CrossRefGoogle Scholar
Speranza, A., van Geel, B., and van der Plicht, J. Evidence for solar forcing of climate change at ca. 850 cal BC from a Czech peat sequence. Global and Planetary Change 35, (2002). 5165.CrossRefGoogle Scholar
Stuvier, M., Braziunas, T.F., Grootes, P.M., and Zielinski, G.A. Is there evidence for solar forcing of climate in GISP2 oxygen isotope record?. Quaternary Research 48, (1997). 259266.CrossRefGoogle Scholar
Teranes, J.L., McKenzie, J.A., Bernascon, S.M., Lotter, A.F., and Sturm, M. A study of oxygen isotopic fractionation during bio-induced calref precipitation in eutrophic Baldeggersee, Switzerland. Geochemica and Cosmochimica 63, (1999). 19811989.CrossRefGoogle Scholar
Teranes, J.L., McKenzie, J.A., Lotter, A.F., and Sturm, M. Stable isotope response to lake eutrophication: calibration of a high-resolution lacustrine sequence from Baldeggersee, Switzerland. Limnology and Oceanography 44, (1999). 320333.CrossRefGoogle Scholar
Theissen, K.M., Dunbar, R.B., Rowe, H.D., and Mucciarone, D.A. Multidecadal- to century-scale arid episodes on the northern Altiplano during the middle Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 257, (2008). 361376.CrossRefGoogle Scholar
Van Geel, B., Buurman, J., and Waterbolk, H.T. Archaeological and paleoecological indications of an abrupt climate change in the Netherlands, and evidences for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11, (1996). 451460.3.0.CO;2-9>CrossRefGoogle Scholar
Van Geel, B., Raspopov, O., Renssen, H., van der Plicht, J., Dergachev, V., and Meijer, H. The role of solar forcing upon climate change. Quaternary Science Reviews 18, (1999). 331338.CrossRefGoogle Scholar
Vannière, B., Colombaroli, D., Chapron, E., Leroux, A., Tinner, W., and Magny, M. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell'Accesa (Tuscany, Italy). Quaternary Science Reviews 27, (2008). 11811196.CrossRefGoogle Scholar
Valero-Garcés, B.L., González-Sampériz, P., Navas, A., Machín, J., Mata, P., Delgado-Huertas, A., Bao, R., Moreno, A., Carrión, J.S., Schwalb, A., and González-Barrios, A. Human impact since medieval times and recent ecological restoration in a Mediterranean lake: The Laguna Zoñar, southern Spain. Journal of Paleolimnology 35, (2006). 441465.CrossRefGoogle Scholar
Vogt, J. La decadencia de Roma.Metamorfosis de la cultura antigua. 200–500, Madrid. (1968). Google Scholar
Wright, V.P. Carbonate depositional systems I: marine shallow-water and lacustrine carbonates. Tucker, M.E., and Wright, V.P. Carbonate Sedimentology. (1990). Blackwell Scientific Publication, Oxford.Google Scholar
Zanchetta, G., Drysdale, R.N., Hellstrom, J.C., Fallick, A.E., Isola, I., Gagan, M.K., and Pareschi, M.T. Enhanced rainfall in the Western Mediterranean during deposition of sapropel S1: stalagmite evidence from Corchia cave (Central Italy). Quaternary Science Reviews 26, (2007). 279286.CrossRefGoogle Scholar
Zolitschka, B. Dating based on freshwater-and marine laminated sediments. Mackay, A., Battarbee, R., Birks, J., and Oldfield, F. Global Change in the Holocene. (2003). Oxford University Press, New York.Google Scholar
79
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Iberian–Roman Humid Period (2600–1600 cal yr BP) in the Zoñar Lake varve record (Andalucía, southern Spain)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Iberian–Roman Humid Period (2600–1600 cal yr BP) in the Zoñar Lake varve record (Andalucía, southern Spain)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Iberian–Roman Humid Period (2600–1600 cal yr BP) in the Zoñar Lake varve record (Andalucía, southern Spain)
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *