Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-16T01:25:44.282Z Has data issue: false hasContentIssue false

Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America

Published online by Cambridge University Press:  20 January 2017

Sherilyn C. Fritz*
Affiliation:
Department of Geosciences, University of Nebraska–Lincoln, Lincoln, NE 68588-0340, USA School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE 68588-0340, USA
Paul A. Baker
Affiliation:
Division of Earth and Ocean Sciences, Duke University, Durham, NC 27708-0227, USA Nicholas School of the Environment, Duke University, Durham, NC 27708-0227, USA
Tim K. Lowenstein
Affiliation:
Department of Geological Sciences and Environmental Studies, State University of New York at Binghamton, Binghamton, NY 13902, USA
Geoffrey O. Seltzer
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, NY 13244, USA
Catherine A. Rigsby
Affiliation:
Department of Geology, East Carolina University, Greenville, NC 27858, USA
Gary S. Dwyer
Affiliation:
Division of Earth and Ocean Sciences, Duke University, Durham, NC 27708-0227, USA
Pedro M. Tapia
Affiliation:
Department of Geosciences, University of Nebraska–Lincoln, Lincoln, NE 68588-0340, USA
Kimberly K. Arnold
Affiliation:
Division of Earth and Ocean Sciences, Duke University, Durham, NC 27708-0227, USA
Teh-Lung Ku
Affiliation:
Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
Shangde Luo
Affiliation:
Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
*
*Corresponding author. Department of Geosciences, University of Nebraska–Lincoln, Lincoln, NE 68588-0340. Fax: +1-402-472-4917.E-mail address:sfritz2@unl.edu (S.C. Fritz).

Abstract

Despite the hypothesized importance of the tropics in the global climate system, few tropical paleoclimatic records extend to periods earlier than the last glacial maximum (LGM), about 20,000 years before present. We present a well-dated 170,000-year time series of hydrologic variation from the southern hemisphere tropics of South America that extends from modern times through most of the penultimate glacial period. Alternating mud and salt units in a core from Salar de Uyuni, Bolivia reflect alternations between wet and dry periods. The most striking feature of the sequence is that the duration of paleolakes increased in the late Quaternary. This change may reflect increased precipitation, geomorphic or tectonic processes that affected basin hydrology, or some combination of both. The dominance of salt between 170,000 and 140,000 yr ago indicates that much of the penultimate glacial period was dry, in contrast to wet conditions in the LGM. Our analyses also suggest that the relative influence of insolation forcing on regional moisture budgets may have been stronger during the past 50,000 years than in earlier times.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., Veliz, C., (2001a). Tropical climate changes at millennial and orbital timescales in the Bolivian Altiplano. Nature. 409, 698701.CrossRefGoogle ScholarPubMed
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., (2001b). The history of South American tropical precipitation for the past 25,000 years. Science. 291, 640643.Google Scholar
Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N., Cabioch, G., (1998). Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: An updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon. 40, 10851092.Google Scholar
Berger, A.L., (1978). Long-term variations of caloric insolation resulting from the earth's orbital elements. Quaternary Research. 9, 139167.CrossRefGoogle Scholar
Betancourt, J.L., Latorre, C., Rech, J.A., Quade, J., Rylander, K.A., (2000). A 22,000-year record of monsoonal precipitation from northern Chile's Atacama Desert. Science. 289, 15421546.CrossRefGoogle ScholarPubMed
Bills, B.G., de Silva, S.L., Currey, D.R., Emenger, R.S., Lillquist, K.D., Donnellan, A., Worden, B., (1994). Hydro-isostatic deflection and tectonic tilting in the central Andes: Initial results of a GPS survey of Lake Minchin shorelines. Geophysical Research Letters. 21, 293296.Google Scholar
Blodgett, T.A., Lenters, J.D., Isacks, B.L., (1997). Constraints on the origin of paleolake expansions in the central Andes. Earth Interactions. 1, (Available at http://EarthInteractions.org).2.3.CO;2>CrossRefGoogle Scholar
Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B., Raynaud, D., (1995). Variations in atmospheric methane concentrations during the Holocene epoch. Nature. 374, 4649.CrossRefGoogle Scholar
Bobst, A.L., Lowenstein, T.K., Jordan, T.E., Godfrey, L.V., Ku, T.-L., Luo, S., (2001). A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology. 173, 2142.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science. 294, 21302136.Google Scholar
Cane, M., Clement, A.C., (1999). A role for the tropical Pacific coupled ocean-atmosphere system on Milankovitch and millennial timescales Part II: Global impacts. Clark, P.U., Webb, R.S., Keigwin, L.D., Mechanisms of Global Climate Change at Millennial Time Scales. American Geophysical Union, Washington, D.C., 373384.Google Scholar
Cross, S.L., Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., (2001). Late Quaternary climate and hydrology of tropical South America inferred from an isotopic and chemical model of Lake Titicaca. Bolivia and Peru. Quaternary Research. 56, 19.Google Scholar
D'Agostino, K., Seltzer, G.O., Baker, P.A., Fritz, S.C., Dunbar, R., (2002). Late-Quaternary lowstands of Lake Titicaca (Peru/Bolivia): evidence from high-resolution seismic data. Palaeogeography, Palaeoclimatology, Palaeoecology. 179, 97111.Google Scholar
Fornari, M., Risacher, F., Feraud, G., (2001). Dating of paleolakes in the central Altiplano of Bolivia. Palaeogeography, Palaeoclimatology, Palaeoecology. 172, 269282.Google Scholar
Fritz, S.C., Juggins, S., Battarbee, R.W., (1993). Diatom assemblages and ionic characterization of lakes of the Northern Great Plains, North America: A tool for reconstructing past salinity and climate fluctuations. Canadian Journal of Fisheries and Aquatic Sciences. 50, 18441856.CrossRefGoogle Scholar
Gallup, C.D., Cheng, H., Taylor, F.W., Edwards, R.L., (2002). Direct determination of the timing of sea level change during Termination II. Science. 295, 310313.Google Scholar
Garreaud, R.D., Vuille, M., Clement, A.C., (2003). The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology. 194, 522.Google Scholar
Grootes, P.M., Stuiver, M., (1997). Oxygen 18/16 variability in Greenland snow and ice with 103 to 105year time resolution. Journal of Geophysical Research. 102, 2645526470.Google Scholar
Hastenrath, S., Kutzbach, J., (1985). Late Pleistocene climate and water budget of the South American Altiplano. Quaternary Research. 24, 249256.Google Scholar
Hooghiemstra, H., Melice, J.L., Berger, A., Shackleton, N.J., (1993). Frequency spectra and paleoclimatic variability of the high-resolution 30–1450 ka Funza I Pollen Record (Eastern Cordillera, Colombia). Quaternary Science Reviews. 12, 141156.CrossRefGoogle Scholar
Kessler, A., (1984). The paleohydrology of Late Pleistocene Lake Tauca on the Bolivian Altiplano and recent climatic fluctuations. Vogel, J.C., Late Cainozoic Paleoclimates of the Southern Hemisphere. Balkema, Rotterdam., 115122.Google Scholar
Ku, T.-L., (2000). Uranium series methods. Noller, J.M., Sowers, J.S., Lettis, W.R., Quaternary Geochronology: Methods and Applications. American Geophysical Union, Washington, DC., 101114.Google Scholar
Lenters, J.D., Cook, K.H., (1997). On the origin of the Bolivian high and related circulation features of the South American climate. Journal of Atmospheric Science. 54, 656677.Google Scholar
Lowenstein, T.K., Hein, M.C., Bobst, A.L., Jordan, T.E., Ku, T.-L., Luo, S., (2003). An assessment of stratigraphic completeness in climate-sensitive closed-basin lake sediments: Salar de Atacama, Chile. Journal of Sedimentary Research. 73, 91104.CrossRefGoogle Scholar
Maslin, M.A., Burns, S.J., (2000). Reconstruction of the Amazon Basin effective moisture availability over the past 14,000 years. Science. 290, 22852287.Google Scholar
Mayle, F.E., Burbridge, R., Killeen, T.J., (2000). Millennial-scale dynamics of southern Amazonian rain forests. Science. 290, 22912294.CrossRefGoogle ScholarPubMed
McManus, J.F., Oppo, D.W., Cullen, J.L., (1999). A 0.5-million-year record of millenial-scale climate variability in the North Atlantic. Science. 283, 971975.Google Scholar
Nobre, P., Shukla, J., (1996). Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. Journal of Climate. 9, 24642479.Google Scholar
Peterson, L.C., Haug, G.H., Hughen, K.A., Rohl, U., (2000). Rapid changes in the hydrologic cycle of the tropical Atlantic during the Last Glacial. Science. 290, 19471951.Google Scholar
Prasad, A.K.S.K., (1990). The genus Cyclotella in Choctawatchee Bay, Florida with special reference to C. striata and C. choctawatchee . Phycologia. 29, 418436.Google Scholar
Robertson, A.W., Mechoso, C.R., Kim, Y.-J., (2000). The influence of Atlantic Sea surface temperature anomalies on the North Atlantic Oscillation. Journal of Climate. 13, 122138.2.0.CO;2>CrossRefGoogle Scholar
Seltzer, G., Rodbell, D., Burns, S., (2000). Isotopic evidence for late Quaternary climatic change in tropical South America. Geology. 28, 3538.Google Scholar
Servant, M., Fontes, J.-C., (1978). Les lacs quaternaires des hauts plateaux des Andes Boliviennes premieres interpretations paleoclimatiques. Cahiers de O.R.S.T.O.M. Series Geologie. 10, 923.Google Scholar
Servant, M., Fournier, M., Argollo, J., Servant-Vildary, S., Sylvestre, F., Wirrmann, D., Ybert, J.-P., (1995). La derniere transition glaciaire/interglaciaire des Andes tropicales sud (Bolivie) d'apres l'etude des variations des niveaux lacustres et des fluctuations glaciaires. Comptes Rendus de l'Academie des Sciences, Paris, Series II. 320, 729736.Google Scholar
Smoot, J.P., Lowenstein, T.K., (1991). Depositional environments of non-marine evaporites. Melvin, J.L., Evaporites, Petroleum, and Mineral Resources. Developments in Sedimentology Elsevier, Amsterdam., 189347.CrossRefGoogle Scholar
Stocker, T.F., (2000). Past and future reorganizations in the climate system. Quaternary Science Reviews. 19, 301319.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G., Hugen, K., Kromer, B., McCormack, F.G., Plicht, J.v.d., Spurk, M., (1998). INTERCAL98 radiocarbon age calibration 24,000 cal BP. Radiocarbon. 40, 10411083.CrossRefGoogle Scholar
Sylvestre, F., Servant, M., Servant-Vildary, S., Causse, C., Fournier, M., Ybert, J.P., (1999). Lake-level chronology on the southern Bolivian Altiplano (18–23°S) during late-Glacial time and the early Holocene. Quaternary Research. 51, 5466.Google Scholar
Sylvestre, F., Servant-Vildary, S., Roux, M., (2001). Diatom-based ionic concentration and salinity models from the south Bolivian Altiplano (15–23 degrees South). Journal of Paleolimnology. 25, 279295.Google Scholar
Thompson, L., Davis, M.E., Mosley-Thompson, E., Sowers, T.A., Henderson, K.A., Zagorodnov, V.S., Lin, P.-N., Mikhalenko, V.N., Campen, R.K., Bolzan, J.F., Cole-Dai, J., Francou, B., (1998). A 25,000 year tropical climate history from Bolivian ice cores. Science. 282, 18581864.CrossRefGoogle Scholar
Vuille, M., Bradley, R.S., Keimig, F., (2000). Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research. 105, 1244712460.Google Scholar
Wielicki, B.A., Wong, T., Allan, R.P., Slingo, A., Kiehl, J.T., Soden, B.J., Gordon, C.T., Miller, A.J., Yang, S.-K., Randall, D.A., Robertson, F., Susskind, J., Jacobowitz, H., (2002). Evidence for large decadal variability in the tropical mean radiative energy budget. Science. 295, 841844.Google Scholar
Zhou, J., Lau, K.-M., (1998). Does a monsoon climate exist over South America?. Journal of Climate. 11, 10201040.Google Scholar