Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-cgcw8 Total loading time: 0.253 Render date: 2021-09-21T06:53:23.797Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Eemian Climatic and Hydrographical Instability on a Marine Shelf in Northern Denmark

Published online by Cambridge University Press:  20 January 2017

Marit-Solveig Seidenkrantz
Affiliation:
Department of Earth Sciences, University of Aarhus, DK-8000, Århus C, Denmark
Karen Luise Knudsen
Affiliation:
Department of Earth Sciences, University of Aarhus, DK-8000, Århus C, Denmark

Abstract

Benthic foraminifera and stable isotope data from the last interglaciation (Eemian, substage 5e) from a borehole at Skagen, Denmark, provide evidence for major environmental and hydrographic changes during this period. During the first millennium of the Eemian, water masses covering northern Denmark became gradually warmer. Temperate conditions prevailed during most of the interglaciation, but these were interrupted by two periods with decreased water temperatures. The first cooling (Event S-1) was not very distinct at Skagen, but the second (Event S-2), seen in both the foraminiferal and oxygen isotope record, represents a large shift to subarctic conditions. Carbon isotopes indicate a change in ocean circulation during both events. No comparable climate variations are seen within the Holocene record at the site. The final cooling of the water masses associated with the substage 5e/5d boundary occurred within a few hundred years. These last interglacial climatic changes were probably caused by variations in strength and/or position of the North Atlantic Drift, possibly as a result of varying vigor of the Atlantic conveyor. In addition, minor variations in the fossil assemblages also indicate fluctuations in the inflow of Atlantic water to the Skagerrak–Kattegat area during the warm intervals of substage 5e.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alve, E., 1995. Benthic foraminiferal distribution and recolonization of formerly anoxic environments in Drammensfjord, southern Norway. Marine Micropaleontology 25, 169186.CrossRefGoogle Scholar
, A. W. H., Tolderlund, D. S., 1971. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. The Micropalaeontology of Oceans 105, 149, Cambridge Univ. Press, Cambridge, UK. Google Scholar
Behre, K.-E., 1989. Biostratigraphy of the last Glacial period in Europe. Quaternary Science Reviews 8, 2544.CrossRefGoogle Scholar
Chappell, J., Shackleton, N.J., 1986. Oxygen isotopes and sea level. Nature 324, 137140.CrossRefGoogle Scholar
Quaternary Research 21, 1984. 123224.CrossRefGoogle Scholar
Conradsen, K., Bergsten, H., Knudsen, K.L., Nordberg, K., Seidenkrantz, M.-S., 1994. Recent benthic foraminiferal distribution in the Kattegat and the Skagerrak, Scandinavia. Cushman Foundation for Foraminiferal Research, Special Publication 32, 5368.Google Scholar
Conradsen, K., Heier-Nielsen, S., 1995. Holocene paleoceanography and paleoenvironments of the Skagerrak-Kattegat, Scandinavia. Paleoceanography 10, 801813.CrossRefGoogle Scholar
Cortijo, E., Duplessy, J.C., Labeyrie, L., Leclaire, H., Duprat, J., van Weering, T.C.E., 1994. Eemian cooling in the Norwegian Sea and the North Atlantic ocean preceding continental ice-sheet growth. Nature 372, 446449.CrossRefGoogle Scholar
Craig, H., Gordon, L. I., 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere, Stable isotopes in oceanographic studies and paleotemperatures. Tongiogi, E., 9, 129, Consiglio Nazionale delle Recherche Laboratorio di Geologica Nucleare Pisa, Spoleto. Google Scholar
De Beaulieu, J.-L., Reille, M., 1989. The transition from temperate phases to stadials in the long upper Pleistocene sequence from Les Echets (France). Palaeogeography, Palaeoclimatology, Palaeoecology 72, 147159.CrossRefGoogle Scholar
De Beaulieu, J.-L., Reille, M., 1992. The last climatic cycle at La Grande Pile (Vosges, France). A new pollen profile. Quaternary Science Reviews 11, 431438.CrossRefGoogle Scholar
Dooley, H., 1974. Hypothesis concerning the circulation of the northern North Sea. Journal de Conseil International pour l'Exploration de la Mer 36, 5461.CrossRefGoogle Scholar
Erlenkeuser, H., 1985. Stable isotopes in benthic foraminifera of Skagerrak core GIK 15530-4: High resolution record of the Younger Dryas and the Holocene. Norsk Geologisk Tidsskrift 65, 4957.Google Scholar
Feyling-Hanssen, R.W., 1955. Stratigraphy of the marine Late-Pleistocene of Billefjorden, Vestspitsbergen. Norsk Polarinstitutt Skrifter 107, 1186.Google Scholar
Feyling-Hanssen, R. W., 1983. Quantitative methods in micropaleontology, Palynology–Micropalaeontology: Laboratories, Equipment and Methods. Costa, L. I., 109, 128.Google Scholar
Field, M.H., Huntley, B., Müller, H., 1994. Eemian climate fluctuations observed in a European pollen record. Nature 371, 779783.CrossRefGoogle Scholar
Forsström, L., Eronen, M., 1985. Flandrian and Eemian shore levels in Finland and adjacent areas—a discussion. Eiszeitalter und Gegenwart 35, 135145.Google Scholar
Fronval, T., Jansen, E., 1996. Rapid changes in ocean circulation and heat flux in the Nordic seas during the last interglacial period. Nature 383, 806810.CrossRefGoogle Scholar
Furnes, G.K., Hackett, B., Saetre, R., 1986. Retroflection of Atlantic water in the Norwegian Trench. Deep-Sea Research 33, 247265.CrossRefGoogle Scholar
Nature 364, 1993. 203207.CrossRefGoogle ScholarPubMed
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., Jouzel, J., 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554.CrossRefGoogle Scholar
Guiot, J., de Beaulieu, J.L., Cheddadi, R., David, F., Ponel, P., Reille, M., 1993. The climate in Western Europe during the last Glacial/Interglacial cycle derived from pollen and insect remains. Palaeogeography, Palaeoclimatology, Palaeoecology 103, 7393.CrossRefGoogle Scholar
Hass, C., 1996. Northern Europe climate variations during late Holocene: evidence from marine Skagerrak. Palaeogeography, Palaeoclimatology, Palaeoecology 123, 121145.CrossRefGoogle Scholar
Hass, C., Kaminski, M.A., 1995. Change in atmosphere and oceanic circulation reflected in North Sea sediments during the late Holocene. Zentralblatt für Geologie und Paläontologie 1 1/2, 5165.Google Scholar
Hauerbach, P., 1992. Skagen Odde—Skaw spit—An area of land created between two seas, Folia Geographica Danica Tom XX. Reitzels Forlag, C. A., Copenhagen. Google Scholar
Houmark-Nielsen, M., 1989. The last interglacial-glacial cycle in Denmark. Quaternary International 3/4, 3139.CrossRefGoogle Scholar
Jansen, E., Bleil., U., Henrich, R., Kringstad, L., Slettemark, B., 1988. Paleoenvironmental changes in the Norwegian Sea and the Northeastern Atlantic during the last 2.8 Ma.: DSDP/ODP Sites 610, 642, 643 and 644. Paleoceanography 3, 563581.CrossRefGoogle Scholar
Johannesen, T., Jansen, E., Flatøy, A., Ravelo, A. C., 1994. The relationship between surface water masses, oceanographic fronts and paleoclimatic proxies in surface sediments of the Greenland, Iceland, Norwegian Seas, Carbon Cycling in the Glacial Ocean. Zahn, R., et al. NATO ASI Series I, 17, 61, 85, Springer-Verlag, Berlin/Heidelberg. Google Scholar
Kautsky, H., 1973. The distribution of the radio nuclide Caesium 137 as an indicator for North Sea Watermass Transport. Deutsche Hydrographische Zeitschrift 26, 125149.CrossRefGoogle Scholar
Kautsky, H., 1981. Radiological investigations in the Western Baltic Sea including Kattegat during the years 1975 to 1980. Deutsche Hydrographische Zeitschrift 34, 125149.CrossRefGoogle Scholar
Keigwin, L.D., Curry, W.B., Lehman, S.J., Johnsen, S., 1994. The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago. Nature 371, 323326.CrossRefGoogle Scholar
Knudsen, K.L., 1984. Foraminiferal stratigraphy in a marine Eemian-Weichselian sequence at Apholm, North Jutland. Bulletin of the Geological Society of Denmark 32, 169180.Google Scholar
Knudsen, K.L., 1985. Foraminiferal faunas in Eemian deposits of the Oldenbüttel area near the Kiel Canal, Germany. Geologisches Jahrbuch A 86, 2747.Google Scholar
Knudsen, K. L., 1992. A long marine Eemian-Weichselian shelf record in North Denmark, Scandinavia, Start of a Glacial. Kukla, G. J., Went, E., NATO ASI Series I 3,, 157, 171, Springer-Verlag, Berlin/Heidelberg. Google Scholar
Knudsen, K.L., Conradsen, K., Heier-Nielsen, S., Seidenkrantz, M.-S., 1996. Palaeoenvironments in the Skagerrak-Kattegat basin in the eastern North Sea during the last deglaciation. Boreas 25, 6577.CrossRefGoogle Scholar
Knudsen, K.L., Conradsen, K., Heier-Nielsen, S., Seidenkrantz, M.-S., 1996. Quaternary palaeoceanography and palaeogeography in northern Denmark: a review of results from the Skagen cores. Bulletin of the Geological Society of Denmark 43, 2231.Google Scholar
Knudsen, K.L., Lykke-Andersen, A.-L., 1982. Foraminifera in Late Saalian, Eemian, Early and Middle Weichselian of the Skærumhede I boring. Bulletin of the Geological Society of Denmark 30, 97109.Google Scholar
Konradi, P., 1976. Foraminifera in Eemian deposits at Stensigmose, southern Jutland. Danmarks Geologiske Undersøgelse, Series II 105, 157.Google Scholar
Kosack, B., Lange, W., 1985. Das Eem-Vorkommen von Offenbüttel/Schnittlohe und die Ausbreitung des Eem-Meeres zwischen Nord- und Ostsee. Geologisches Jahrbuch A 86, 317.Google Scholar
Lykke-Andersen, H., Knudsen, K.L., Christiansen, C., 1993. The Quaternary of the Kattegat area, Scandinavia: a review. Boreas 22, 269281.CrossRefGoogle Scholar
Lykke-Andersen, H., Seidenkrantz, M.-S., Knudsen, K.L., 1993. Quaternary sequences and their relations to the pre-Quaternary in the vicinity of Anholt, Kattegat, Scandinavia. Boreas 22, 291298.CrossRefGoogle Scholar
Mangerud, J., Sønstegaard, E., Sejrup, H-P., Haldorsen, S., 1981. A continuous Eemian-Early Weichselian sequence containing pollen and marine fossils at Fjøsanger, western Norway. Boreas 10, 137208.CrossRefGoogle Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. Jr., Shackleton, N.J., 1987. Age Dating and the Orbital Theory of the Ice Ages: Development of a High-Resolution 0 to 300,000-Year Chronostratigraphy. Quaternary Research 27, 129.CrossRefGoogle Scholar
McManus, J.F., Bond, G.C., Broecker, W.S., Johnsen, S., Labeyrie, L., Higgins, S., 1994. High-resolution climate records from the North Atlantic during the last interglacial. Nature 371, 326329.CrossRefGoogle Scholar
Murray, J. W., 1991. Ecology and Palaeoecology of Benthic Foraminifera. Longman, Essex.Google Scholar
Nagy, J., 1965. Foraminifera in some bottom samples from shallow waters in Vestspitsbergen. Norsk Polarinstitutt, Årbok 1963 109128.Google Scholar
Nagy, J., Qvale, G., 1985. Benthic foraminifera in Upper Quaternary Skagerrak deposits. Norsk Geologisk Tidsskrift 65, 107113.Google Scholar
Nordberg, K., 1991. Oceanography in the Kattegat and Skagerrak over the past 8000 years. Paleoceanography 6, 461484.CrossRefGoogle Scholar
Nørvang, A., 1958. Islandiella Cassidulina . Meddelelser fra Dansk Naturhistorisk Forening 120, 2541.Google Scholar
Otto, L., 1976. Problems in the application of reservoir theory to the North Sea. ICES, Hydrological Commission, CM 1976/C 18, 17.Google Scholar
Peel, D.A., 1995. Profiles of the past. Nature 378, 234235.CrossRefGoogle Scholar
Penney, D.N., 1989. Microfossils (Foraminifera, Ostracoda) from an Eemian (Last Interglacial) tidal flat sequence in south-west Denmark. Quaternary International 3/4, 8591.CrossRefGoogle Scholar
Pisias, N.G., Martinson, D.G., Moore, T.C.Jr., Shackleton, N.J., Prell, W., Hays, J., Boden, G., 1984. High resolution stratigraphic correlation of benthic oxygen isotope records spanning the last 300,000 years. Marine Geology 56, 119136.CrossRefGoogle Scholar
Qvale, G., van Weering, T.C.E., 1985. Relationship of surface sediments and benthic foraminiferal distribution patterns in the Norwegian Channel (Northern North Sea). Marine Micropalaeontology 9, 469488.CrossRefGoogle Scholar
Raukas, A., 1991. Eemian interglacial record in the Northwestern European part of the Soviet Union. Quaternary International 10–12, 183189.CrossRefGoogle Scholar
Rodhe, J., 1987. The large-scale circulation in the Skagerrak: Interpretation of some observations. Tellus, Series A 39, 245253.CrossRefGoogle Scholar
Sarnthein, M., Tiedemann, R., 1990. Younger Dryas-style cooling events at glacial terminations I-VI at ODP site 658: Associated benthic δ13 . Paleoceanography 5, 10411055.CrossRefGoogle Scholar
Seidenkrantz, M.-S., 1993. Benthic foraminiferal and stable isotope evidence for a “Younger Dryas-style” cold spell at the Saalian-Eemian transition, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology 102, 103120.CrossRefGoogle Scholar
Seidenkrantz, M.-S., 1993. Subrecent changes in the foraminiferal distribution in the Kattegat and the Skagerrak, Scandinavia: anthropogenic influence and natural causes. Boreas 22, 383395.CrossRefGoogle Scholar
Seidenkrantz, M.-S., Knudsen, K.L., 1994. Marine high resolution records of the last interglacial in Northwest Europe: a review. Géographie physique et Quaternaire 48, 157168.CrossRefGoogle Scholar
Seidenkrantz, M.-S., Kristensen, P., Knudsen, K.L., 1995. Marine evidence for climatic instability during the last interglacial in shelf records from northwest Denmark. Journal of Quaternary Science 10, 7782.CrossRefGoogle Scholar
Sejrup, J.P., 1987. Molluscan and foraminiferal biostratigraphy of an Eemian-Early Weichselian section on Karmøy, southwestern Norway. Boreas 16, 2742.CrossRefGoogle Scholar
Sejrup, H.P., Haflidason, H., Kristensen, D.K., Johnsen, S.J., 1995. Last interglacial and Holocene climatic development in the Norwegian Sea region: ocean front movements and ice-core data. Journal of Quaternary Science 10, 385390.CrossRefGoogle Scholar
Sejrup, H.P., Larsen, E., 1991. Eemian–Early Weichselian N-S temperature gradients; North Atlantic–NW Europe. Quaternary International 10–12, 161166.CrossRefGoogle Scholar
Sejrup, H.P., Knudsen, K.L., 1993. Paleoenvironments and correlations of interglacial sediments in the North Sea. Boreas 22, 223235.CrossRefGoogle Scholar
Stabell, B., Thiede, J., 1985. Upper Quaternary marine Skagerrak (NE North Sea) deposits: Stratigraphy and depositional environment. Norsk Geologisk Tidsskrift 65, 1149.Google Scholar
Steinsund, P. I., Polyak, L, Hald, M., Korsun, S., Distribution of calcareous benthic foraminifera in recent sediments of the Barents and Kara Seas. Journal of Foraminiferal Research.Google Scholar
Svansson, A., 1975. Physical and chemical oceanography of the Skagerrak and the Kattegat. 1,, 1 88.Google Scholar
Svansson, A., 1984. Hydrographic features of the Kattegat. Rapports et Procès-Verbaux des Réunion Conseil International pour l'Exploration de la Mer 185, 7890.Google Scholar
Taylor, K.C., Hammer, C.U., Alley, R.B., Clausen, H.B., Dahl-Jensen, D., Gow, A.J., Gundestrup, N.S., Kipfstuhl, J., Moore, J.C., Waddington, E.D., 1993. Electrical conductivity measurements from GISP2 and GRIP Greenland ice cores. Nature 366, 549552.CrossRefGoogle Scholar
Thouveny, N., de Beaulieu, J.-L., Bonifay, E., Creer, K.M., Guiot, J., Icole, M., Johnsen, S., Jouzel, J., Reille, M., Williams, T., Williamson, D., 1994. Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature 371, 503506.CrossRefGoogle Scholar
Tzedakis, P.C., Bennett, K.D., Magri, D., 1994. Climate and the pollen record. Nature 370, 513.CrossRefGoogle Scholar
Van Voorthuysen, J.H., 1957. Foraminiferen aus dem Eemian (Riss-Wurm Interglacial) in der Bohrung Amersfoort I (locus typicus). Medelingen van de Geoleologische Stichtung, N. S. 11, 2739.Google Scholar
Walton, W. R., 1964. Recent foraminiferal ecology and paleoecology, Approaches to Paleoecology. Imbrie, J., Newell, N. D., 151, 237, Wiley, New York. Google Scholar
Weaver, A.J., Hughes, T.M.C., 1994. Rapid interglacial climate fluctuation driven by North Atlantic ocean circulation. Nature 367, 447450.CrossRefGoogle Scholar
Welten, M., 1981. Verdrängungen und Vernichtungen der anspruchvollen Gehölze am Beginn der letzten Eiszeit und die Korrelation der Frühwürm-Interstadiale in Mittle- und Nordeuropa. Eiszeitalter und Gegenwart 31, 187202.Google Scholar
Woillard, G.M., 1979. Abrupt end of the last interglacial s.s. in north-west France. Nature 281, 558562.CrossRefGoogle Scholar
Woillard, G.M., 1979. The last interglacial-glacial cycle at Grande Pile in Northeastern France. Bulletin de la Société belge de Géologie 88, 5169.Google Scholar
Zagwijn, W.H., 1961. Vegetation, climate and radiocarbon datings in the late Pleistocene of the Netherlands, Eemian and early Weichselian. Medelingen van de Geoleologische Stichtung 14, 1545.Google Scholar
Zagwijn, W.H., 1983. Sea-level changes in the Netherlands during the Eemian. Geologie en Mijnbouw 16, 437450.Google Scholar
Zans, V., 1936. Das letztinterglaziale Portlandia-Meer des Baltikums. Bulletin de la Commision géologique de Finlande 115, 231250.Google Scholar
37
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Eemian Climatic and Hydrographical Instability on a Marine Shelf in Northern Denmark
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Eemian Climatic and Hydrographical Instability on a Marine Shelf in Northern Denmark
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Eemian Climatic and Hydrographical Instability on a Marine Shelf in Northern Denmark
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *