Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-04T05:25:03.562Z Has data issue: false hasContentIssue false

A 30,000 yr Record of land-ocean interaction in the eastern gulf of Guinea

Published online by Cambridge University Press:  20 January 2017

Fabienne Marret*
Affiliation:
School of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, UK
So-Young Kim
Affiliation:
Division of Polar Climate Research, Korea Polar Research Institute, Get-pearl Tower, South Korea
James Scourse
Affiliation:
School of Ocean Sciences, University of Wales, Bangor, UK
*
*Corresponding author. Fax: + 44 151 7942866. E-mail address:f.marret@liv.ac.uk (F. Marret).

Abstract

A 30,000 yr dinocyst and pollen record from the eastern equatorial Atlantic (off Cameroon) has been investigated in order to identify land–ocean linkages during the last deglacial transition. A strong correlation between the abundance of Brigantedinium spp. and the Ca/Fe ratio during the last glacial period suggests enhanced marine productivity in association with cool seawater temperatures and nutrient input linked to coastal upwelling and/or a proximal river mouth. Dry conditions are recorded on the adjacent continent with a significant representation of open vegetation indicators and the Afromontane taxon Podocarpus. After 17 calka BP these indicators register a sharp decline as a result of a climatic transition from the dry/cooler conditions of the last glacial period to the wetter/warmer conditions of the deglaciation. Simultaneously, dinocysts show a significant shift from dominant heterotrophs to an increasing abundance of autotrophs, reflecting warmer conditions. Significant changes are observed during the Younger Dryas, with a return to drier conditions and higher salinities. The start of the Holocene is marked by very low-salinity conditions, reflecting optimal monsoonal conditions over west equatorial Africa. The end of the African Humid Period is observed between 6 and 5 calka BP, followed by significant fluctuations in both terrestrial and oceanic proxies.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adegbie, A.T., (2001). Reconstruction of paleoenvironmental conditions in equatorial Atlantic and the Gulf of Guinea basins for the last 245,000 years. PhD thesisUniversity of Bremen, (No.178).Google Scholar
Adegbie, A.T., Schneider, R.R., Rohl, U., Wefer, G., (2003). Glacial millennial-scale fluctuations in central African precipitation recorded in terrigenous sediment supply and freshwater signals offshore Cameroon. Palaeogeography, Palaeoclimatology, Palaeoecology 197, 323333.CrossRefGoogle Scholar
Assi-Kaudjhis, C., (2012). Vegetation evolution in the mountains of Cameroon during the last 20 000 years: pollen analysis of Lake Bambili sediments. Blanco, Juan A. Forest Ecosystems — More than Just Trees. (Dr, ISBN: 978-953-51-0202-1, InTech).Google Scholar
Bakun, A., (1978). Guinea current upwelling. Nature 271, 147150.Google Scholar
Barker, P.A., Talbot, M.R., Street-Perrott, F.A., Marret, F., Scourse, J., Odada, E.O., (2004). Late Quaternary climatic variability in intertropical Africa. Developments in Paleoenvironmental Research Series 6, 117138.Google Scholar
Bird, M.I., Giresse, P., Chivas, A.R., (1994). Effect of forest and savanna vegetation on the carbon-isotope composition of sediments from the Sanaga River, Cameroon. Limnology and Oceanography 39, 18451854.CrossRefGoogle Scholar
Bricquet, J.P., (1990). Régimes et bilans hydrologiques de l'Afrique centrale. Les apports à l'océan, du golfe du Biafra à la pointe du Dande. Lafranchi, R., Schwarz, D. Paysages quaternaires de l'Afrique centrale atlantique. ORSTOM Editions, Bondy.4251.Google Scholar
Colin, C., (1991). Sur les upwellings équatorial et côtier (5°N) dans le Golfe de Guinée. Oceanologica Acta 14, 223240.Google Scholar
Collins, J.A., Schefuß, E., Heslop, D., Mulitza, S., Prange, M., Zabel, M., Tjallingii, R., Dokken, T.M., Huang, E., Mackensen, A., Schulz, M., Tian, J., Zarriess, M., Wefer, G., (2011). Interhemispheric symmetry of the tropical African rainbelt over the past 23,000 years. Nature Geosciences 4, 4245.Google Scholar
Crosta, X., Romero, O., Ther, O., Schneider, R.R., (2012). Climatically-controlled siliceous productivity in the eastern Gulf of Guinea during the last 40,000 Past year. Climate of the 8, 415431.Google Scholar
Dale, B., Dale, A.L., Jansen, J.H.F., (2002). Dinoflagellate cysts as environmental indicators in surface sediments from the Congo deep-sea fan and adjacent regions. Palaeogeography, Palaeoclimatology, Palaeoecology 185, 309338.Google Scholar
Davis, B.A.S., Brewer, S., (2009). Orbital forcing and role of the latitudinal insolation/temperature gradient. Climate Dynamics 32, 143165.Google Scholar
Dupont, L., Behling, H., (2006). Land-sea linkages during deglaciation: High-resolution records from the eastern Atlantic off the coast of Namibia and Angola (ODP site 1078). Quaternary International 148, 1928.Google Scholar
Dupont, L., Ning, S., Jahns, S., Marret, F., (1996). Podocarpus in West Africa during the Late Pleistocene. Palaeoecology of Africa 24, 85101.Google Scholar
Dupont, L., Marret, F., Winn, K., (1998). Land-sea correlation by means of terrestrial and marine palynomorphs from the equatorial East Atlantic: phasing of SE trade winds and the oceanic productivity. Palaeogeography, Palaeoclimatology, Palaeoecology 142, 5184.Google Scholar
Dupont, L., Bonner, B., Schneider, R., Wefer, G., (2001). Mid-Pleistocene environmental change in tropical Africa began as early as 1.05 Ma. Geology 29, 195198.Google Scholar
Dupont, L.M., Behling, H., Jahns, S., Marret, F., Kim, J.H., (2007). Variability in glacial and Holocene marine pollen records offshore from west southern Africa. Vegetation History and Archaeobotany 16, 87100.Google Scholar
Dupont, L.M., Behling, H., Kim, J.H., (2008). Thirty thousand years of vegetation development and climate change in Angola (Ocean Drilling Program Site 1078) (vol 4, pg 107–124, 2008). Climate of the Past 7, 1 115.CrossRefGoogle Scholar
Eisma, D., van Bennekom, A.J., (1978). The Zaire River and estuary and the Zaire outflow in the Atlantic Ocean. Netherland Journal of Sea Research 12, 255272.Google Scholar
Fensome, R.A., Williams, G.L., (2004). The Lentin and Williams Index of fossil dinoflagellates 2004 edition. American Association of Stratigraphic Palynologists Foundation Contribution Series 42, .Google Scholar
Gabche, C.E., Folack, J., (1997). Cameroon coastal river network and its impact on the coastal and marine environment. 27th Liege Colloquium on Ocean Hydrodynamics. Liege Belgium, 8–12 May 1995. IRMA Report 9, .Google Scholar
Gasse, F., Chalié, F., Vincens, A., Williams, M.A.J., Williamson, D., (2008). Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quaternary Science Reviews 27, 23162340.CrossRefGoogle Scholar
Hessler, I., Dupont, L., Bonnefille, R., Behling, H., Gonzalez, C., Helmens, K.F., Hooghiemstra, H., Lebamba, J., Ledru, M.P., Lezine, A.M., Maley, J., Marret, F., Vincens, A., (2010). Millennial-scale changes in vegetation records from tropical Africa and South America during the last glacial. Quaternary Science Reviews 29, 28822899.Google Scholar
Hessler, I., Dupont, L., Handiani, D., Paul, A., Merkel, U., Wefer, G., (2012). Masked millennial-scale climate variations in South West Africa during the last glaciation. Climate of the Past 8, 841853.Google Scholar
Holzwarth, U., Esper, O., Zonneveld, K.A.F., (2010). Organic-walled dinoflagellate cysts as indicators of oceanographic conditions and terrigenous input in the NW African upwelling region. Review of Palaeobotany and Palynology 159, 3555.Google Scholar
Itambi, A.C., Von Dobeneck, T., Adegbie, A.T., (2010). Millennial-scale precipitation changes over Central Africa during the late Quaternary and Holocene: evidence in sediments from the Gulf of Guinea. Journal of Quaternary Science 25, 267279.Google Scholar
Kallweit, W., Mollenhauer, G., Zabel, M., (2012). Multi-proxy reconstruction of terrigenous input and sea-surface temperatures in the eastern Gulf of Guinea over the last ~ 35 ka. Marine Geology 319-322, 3546.Google Scholar
Kim, S.Y., Scourse, J., Marret, F., Lim, D.I., (2010). A 26,000-year integrated record of marine and terrestrial environmental change off Gabon, west equatorial Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 428438.Google Scholar
Leroux, M., (2001). The Meteorology and Climate of Tropical Africa. Springer-Praxis, Chichester.Google Scholar
Lezine, A.M., Cazet, J.P., (2005). High-resolution pollen record from core KW31, Gulf of Guinea, documents the history of the lowland forests of West Equatorial Africa since 40,000 yr ago. Quaternary Research 64, 432443.Google Scholar
Lowe, J.J., Hoek, W.Z., INTIMATE Group, , (2001). Inter-regional correlation of palaeoclimatic records for the Last Glacial–Interglacial Transition: a protocol for improved precision recommended by the INTIMATE project group. Quaternary Science Reviews 20, 11751187.Google Scholar
Maley, J., Brenac, P., (1998). Vegetation dynamics, palaeoenvironments and climatic changes in the forests of western Cameroon during the last 28,000 years BP. Review of Palaeobotany and Palynology 99, 157187.Google Scholar
Marchant, R., Hooghiemstra, H., (2004). Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth-Science Reviews 66, 217260.CrossRefGoogle Scholar
Marret, F., (1994). Distribution of dinoflagellate cysts in recent marine sediments from the East Equatorial Atlantic (Gulf of Guinea). Review of Palaeobotany and Palynology 84, 122.Google Scholar
Marret, F., Kim, S.Y., (2009). Operculodinium aguinawense sp. nov., a dinoflagellate cyst from the late Pleistocene and Recent sediments of the East Equatorial Atlantic Ocean. Palynology 33, 125139.Google Scholar
Marret, F., Zonneveld, K.A.F., (2003). Atlas of modern organic-walled dinoflagellate cyst distribution. Review of Palaeobotany and Palynology 125, 1200.Google Scholar
Marret, F., Scourse, J., Versteegh, G., Jansen, J., Schneider, R., (2001). Integrated marine and terrestrial evidence for abrupt Congo River palaeodischarge fluctuations during the last deglaciation. Journal of Quaternary Science 16, 761766.Google Scholar
Marret, F., Eiriksson, J., Knudsen, K.L., Turon, J.L., Scourse, J.D., (2004). Distribution of dinoflagellate cyst assemblages in surface sediments from the northern and western shelf of Iceland. Review of Palaeobotany and Palynology 128, 3553.CrossRefGoogle Scholar
Marret, F., Maley, J., Scourse, J., (2006). Climatic instability in West equatorial Africa during the Mid- and Late Holocene. Quaternary International 150, 7181.Google Scholar
Marret, F., Scourse, J., Kennedy, H., Ufkes, E., Jansen, J.H.F., (2008). Marine production in the Congo-influenced SE Atlantic over the past 30,000 years: a novel dinoflagellate-cyst based transfer function approach. Marine Micropaleontology 68, 198222.Google Scholar
Morley, R.J., Richards, K., (1993). Gramineae cuticle: a key indicator of Late Cenozoic climatic change in the Niger Delta. Review of Palaeobotany and Palynology 77, 119127.CrossRefGoogle Scholar
Nicholson, S.E., Grist, J.P., (2001). A conceptual model for understanding rainfall variability in the West African Sahel on interannual and interdecadal timescales. International Journal of Climatology 21, 17331757.Google Scholar
Peterson, R.G., Stramma, L., (1991). Upper-level circulation in the South Atlantic Ocean. Progress in Oceanography 26, 173.Google Scholar
Pickard, G.L., Emery, W.J., (1982). Descriptive Physical Oceanography — An Introduction. 4th ed.A. Wheaton & Co. Ltd., Exeter.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeye, C.E., (2009). Intcal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 11111150.Google Scholar
Richards, P., (1996). The Tropical Rain Forest, an Ecological Study.second editionCambridge University Press, Cambridge.Google Scholar
Rouis-Zargouni, I., Turon, J.L., Londeix, L., Essallami, L., Kallel, N., Sicre, M.A., (2010). Environmental and climatic changes in the central Mediterranean Sea (Siculo–Tunisian Strait) during the last 30 ka based on dinoflagellate cyst and planktonic foraminifera assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 285, 1729.Google Scholar
Sanchez-Goñi, M.F., Harrison, S.P., (2010). Millennial-scale climate variability and vegetation changes during the last glacial: concepts and terminology. Quaternary Science Reviews 29, 28232827.Google Scholar
Scourse, J., Marret, F., Versteegh, G.J.M., Jansen, J.H.F., Schefuß, E., van der Plicht, J., (2005). High-resolution last deglaciation record from the Congo fan reveals significance of mangrove pollen and biomarkers as indicators of shelf transgression. Quaternary Research 64, 5769.Google Scholar
Shi, N., Dupont, L., Beug, H., Schneider, R., (2000). Correlation between vegetation in southwestern Africa and oceanic upwelling in the past 21,000 years. Quaternary Research 54, 7280.Google Scholar
Talbot, M.R., Filippi, M.L., Jensen, N.B., Tiercelin, J.J., (2007). An abrupt change in the African monsoon at the end of the Younger Dryas. Geochemistry, Geophysics, Geosystems 8, 310.1029/2006GC001465.Google Scholar
Timm, O., Kohler, P., Timmermann, A., Menviel, L., (2010). Mechanisms for the onset of the African Humid Period and Sahara Greening 14.5–11 ka BP. Journal of Climate 23, 26122633.Google Scholar
Tomczak, M., Godfrey, J.S., (1994). Regional oceanography: an introduction by Butler & Tanner Ltd., Frome and London.Google Scholar
Van Campo, E., Bengo, M.D., (2004). Mangrove palynology in recent sediments off Cameroon. Marine Geology 208, 315330.Google Scholar
Verstraete, J.-M., (1992). The seasonal upwellings in the Gulf of Guinea. Progress in Oceanography 29, 160.Google Scholar
Vizy, E.K., Cook, K.H., (2002). Development of a mesoscale model for the tropics: influence of sea surface temperature anomalies on the West African monsoon. Journal of Geophysical Research 107, 3 4023.Google Scholar
Voituriez, B., Herbland, A., Le Borgne, R., (1982). Les variations saisonnières des courants équatoriaux de l'Atlantique est pendant l'expérience météorologique mondiale (PEMG). Oceanologica Acta 5, 301314.Google Scholar
Waelbroeck, C., Paul, A., Kucera, M., Rosell-Melé, A., Weinelt, M., Schneider, R., Mix, A.C., Abelmann, A., Armand, L., Bard, E., Barker, S., Barrows, T.T., Benway, H., Cacho, I., Chen, M.T., Cortijo, E., Crosta, X., de Vernal, A., Dokken, T., Duprat, J., Elderfield, H., Eynaud, F., Gersonde, R., Hayes, A., Henry, M., Hillaire-Marcel, C., Huang, C.-C., Jansen, E., Juggins, S., Kallel, N., Kiefer, T., Kienast, M., Labeyrie, , Leclaire, H.-L., Londeix, L., Mangin, S., Matthiessen, J., Marret, F., Meland, M., Morey, A.E., Mulitza, S., Pflaumann, U., Pisias, N.G., Radi, T., Rochon, A., Rohling, E.J., Sbaffi, L., Schäfer-Neth, C., Solignac, S., Spero, H., Tachikawa, K., Turon, J.-L., (2009). Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geosciences 2, 127132.Google Scholar
Wagner, R.G., Silva, A.D., (1994). Surface conditions associated with anomalous rainfall in the Guinea coastal region. International Journal of Climatology 14, 179199.Google Scholar
Weldeab, S., Schneider, R.R., Kolling, M., Wefer, G., (2005). Holocene African droughts relate to eastern equatorial Atlantic cooling. Geology 33, 981984.Google Scholar
Weldeab, S., Lea, D.W., Schneider, R.R., Andersen, N., (2007). 155,000 years of West African monsoon and ocean thermal evolution. Science 316, 13031307.Google Scholar
White, F., (1983). The Vegetation of Africa. UNESCO, Paris.Google Scholar
Zonneveld, K.A.F., Bockelmann, F., Holzwarth, U., (2007). Selective preservation of organic-walled dinoflagellate cysts as a tool to quantify past net primary production and bottom water oxygen concentrations. Marine Geology 237, 3–4 109126.Google Scholar