Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-02T05:39:39.622Z Has data issue: false hasContentIssue false

The universal RNA genetic code

Published online by Cambridge University Press:  17 March 2009

C. T. Caskey
Affiliation:
Laboratory of Biochemical Genetics, National Heart and Lung Institute, National Institutes of Health, Bethesda, Maryland 20014

Extract

The code of inheritable information which directs the synthesis of protein molecules is now known. This information is contained in the replicative molecules deoxyribonucleic or ribonucleic acid (Avery, Macleod & McCarty, 1944; Loeb & Zinder, 1961). Translation of the nucleic acid ‘information’ into protein molecules involves the initial transcription of the nucleic acid molecules into transient messenger ribonucleic molecules which are single stranded base paired complements of the more stable ‘information’ nucleic acid molecules. The events leading to the translation of the linear order of nucleic acid information in mRNA to a corresponding linear sequence of amino acids in a protein are largely elucidated at this time and will be the subject of this discussion. Since the knowledge of the genetic code is a result of data obtained from in vitro translational studies which employ the equivalent of mRNA, the genetic code is described as the RNA code rather than its DNA complement. Elucidation of the RNA code has been the focus of research activity for a large number of research laboratories over the past 10–15 years. As a result of these investigations we have a detailed description of the genetic code for life on this planet. This code appears universal in its organization and translational mechanism. Since the interactions of macromolecules necessary for genetic translation are understood with greater precision than the factors responsible for the origin of the Genetic Code, this discussion will deal in more detail with the events in the translation of genetic information.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arlinghaus, R., Favelukes, G. & Schweet, R. (1963). A ribosome-bound intermediate in polypeptide synthesis. Biochem. biophys. Res. Commun. 11, 92.CrossRefGoogle Scholar
Avery, O. T., MacLeod, C. M. & McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by desoxyribonucleic acid fraction isolated from pneumococcus type III. J. exp. Med. 79, 137.CrossRefGoogle ScholarPubMed
Barnett, W. E. & Jacobson, K. B. (1964). Evidence for degeneracy and ambiguity in interspecies aminoacyl-sRNA formation. Proc. natn. Acad. Sci. U.S.A. 51, 642.CrossRefGoogle ScholarPubMed
Beaudet, A., Goldstein, J., Milman, G., Tompkins, R., Rosman, M., Scolnick, E. & Caskey, C. T. (1970). Release factor recognition of terminator codons. Fedn Proc. Fedn Am. Socs exp. Biol. 29, 538.Google Scholar
Brenner, S., Stretton, A. O. M. & Kaplan, S. (1965). Genetic code: The ‘nonsense’ triplets for chain termination and their suppression. Nature, Lond. 206, 994.CrossRefGoogle ScholarPubMed
Capecchi, M. P. (1966). Initiation of E. coli proteins. Proc. natn. Acad. Sci. U.S.A. 55, 1517.CrossRefGoogle ScholarPubMed
Capecchi, M. P. (1967). Polypeptide chain termination in vitro: Isolation of a release factor. Proc. natn. Acad. Sci. U.S.A. 58, 1144.CrossRefGoogle ScholarPubMed
Caskey, C. T., Beaudet, A. & Nirenberg, M. (1968). Dissimilar responses of mammalian and bacterial transfer RNA fractions to messenger RNA codons. J. molec. Biol. 37, 99.CrossRefGoogle ScholarPubMed
Caskey, C. T., Tompkins, R., Scolnick, E., Caryk, T. & Nirenberg, M. (1968). Sequential translation of trinucleotide codons for the initiation and termination of protein synthesis. Science, N.Y. 162, 135.CrossRefGoogle ScholarPubMed
Chapeville, F., Lipmann, F., Von Ehrenstein, G., Weisblum, B., Ray, W. J. & Benzer, S. (1962). On the role of soluble ribonucleic acid in coding for amino acids. Proc. natn. Acad. Sci. U.S.A. 48, 1086.CrossRefGoogle ScholarPubMed
Clark, B. F. C. & Marcker, K. A. (1966). The role of N-formyl-methionyl-sRNA in protein biosynthesis. J. molec. Biol. 17, 394.CrossRefGoogle ScholarPubMed
Crick, F. H. C., Barnett, L., Brenner, S. & Watts-Tobin, R. (1961). General nature of the genetic code for proteins. Nature, Lond. 192, 1227.CrossRefGoogle ScholarPubMed
Crick, F. H. C. (1966). Codon-anticodon pairing: The wobble hypothesis. J. molec. Biol. 19, 548.CrossRefGoogle ScholarPubMed
Crick, F. H. C. (1968). The origin of the genetic code. J. molec. Biol. 38, 367.CrossRefGoogle ScholarPubMed
Doctor, B. P. & Mudd, J. (1963). Species specificity of amino acid acceptor ribonucleic acid and aminoacyl soluble ribonucleic acid synthetases. J. molec. Biol. 238, 3677.Google ScholarPubMed
Doctor, B. P., Loebel, J. F., Sodd, M. A. & Winter, D. B. (1969). Nucleotide sequence of E. colt tyrosine transfer ribonucleic acid. Science N. Y. 163, 693.CrossRefGoogle Scholar
Goodman, H. M., Abelson, J., Landy, A., Brenner, S. & Smith, J. D. (1968). Amber suppression: A nucleotide change in the anticodon of a tyrosine transfer RNA. Nature, Lond. 217, 1019.CrossRefGoogle ScholarPubMed
Gupta, N. K. (1968). A study of amino acid incorporation in a reticulocyte cell-free protein-synthesizing system with polyribonucleotides with repeating nucleotide sequences used as messengers, J. biol. Chem. 243, 4959.CrossRefGoogle Scholar
Harada, K. & FOX, S. N. (1965). The Origin of Prebiological Systems and of their Molecular Matrices. New York: Academic Press.Google Scholar
Hoagland, M. B., Stephenson, M. L., Scott, J. F., Hecht, L. I. & Zamecnik, P. C. (1958). A soluble ribonucleic acid intermediate in protein synthesis, J. biol. Chem. 231, 241.CrossRefGoogle ScholarPubMed
Holley, R. W., Apgar, J., Merrill, S. H. & Zubkoff, P. L. (1961). Nucleotide and oligonucleotide compositions of the alanine-, valine, and tyrosine acceptor ‘soluble’ ribonucleic acids of yeast, J. Am. chem. Soc. 83, 4861.CrossRefGoogle Scholar
Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., Penswick, J. R. & Zamir, A. (1965). Structure of a ribonucleic acid. Science, N. Y. 147, 1462.CrossRefGoogle ScholarPubMed
Imura, N., Weiss, G. B. & Chambers, R. W. (1969). Reconstruction of alamine acceptor activity from fragments of yeast Nature, Lond. 222, 1147.CrossRefGoogle Scholar
Iwasaki, K., Sabol, S., Wahba, A. & Ochoa, S. (1968). Translation of the genetic message. VII. Role of initiation factors in formation of the chain initiation complex with Escherichia coli ribosomes. Archs Biochem. Biophys. 125, 542.CrossRefGoogle ScholarPubMed
Jones, D. S., Nishimura, S. & Khorana, H. G. (1966). Further synthesis, in vitro of copolypeptides containing two amino acids in alternating sequence dependent upon DNA-like polymers containing two nucleotides in alternating sequence, J. molec. Biol. 16, 454.CrossRefGoogle ScholarPubMed
Jukes, T. H. (1966). Molecules and Evolution. New York: Columbia University Press.Google Scholar
Kaji, A. & Kaji, H. (1963). Specific interaction of soluble RNA with polyribonucleic acid induced ribosomes. Biochem. biophys. Res. Commun. 13, 186.CrossRefGoogle Scholar
Kellogg, D. A., Doctor, B. P., Loebel, J. E. & Nirenberg, M. W. (1966). RNA codons and protein synthesis. IX. Synonym codon recognition by multiple species of valine, alanine, and methionine-sRNA. Proc. natn. Acad. Sci. U.S.A. 55, 912.CrossRefGoogle ScholarPubMed
Khorana, H. G., Buchi, H., Ghosh, H., Gupta, H., Jacob, T. M., Kossel, H., Morgan, R., Narang, S. A., Ontsuka, E. & Wells, P. R. (1966). Polynucleotide synthesis and the genetic code. Cold. Spring Harb. Symp. quant. Biol. 31, 39.CrossRefGoogle ScholarPubMed
Khorana, H. G. (1968). Synthesis in the study of nucleic acids. Biochem. J. 109, 709.CrossRefGoogle Scholar
Lacey, J. C. & Pruitt, K. M. (1969). Origin of the genetic code. Nature, Lond. 223, 799.CrossRefGoogle ScholarPubMed
Leder, P., Singer, M. F. & Brimacombe, R. L. C. (1965). Synthesis of trinucleoside diphosphates with polynucleotide phosphorylase. Biochemistry, N.Y. 4, 1561.CrossRefGoogle ScholarPubMed
Leob, T. & Zinder, N. D. (1961). A bacteriophage containing RNA. Proc. natn. Acad. Sci. U.S.A. 47, 282.CrossRefGoogle Scholar
Levitt, M. (1969). Detailed molecular model for transfer ribonucleic acid. Nature, Lond. 224, 759.CrossRefGoogle ScholarPubMed
Marcker, K. (1965). The formation of N-formyl-methionyl-sRNA. J. molec. Biol. 14, 63.CrossRefGoogle ScholarPubMed
Marshall, R. E., Caskey, C. T. & Nirenberg, M. (1967). Fine structure of RNA code-words recognized by bacterial, amphibian, and mammalian transfer RNA. Science, N.Y. 155, 820.CrossRefGoogle Scholar
Martin, R. G., Matthaei, J. H., Jones, O. W. & Nirenberg, M. W. (1962). Ribonucleotide composition of the genetic code. Biochem. biophys. Res. Commun. 6, 410.CrossRefGoogle ScholarPubMed
Miller, S. L. (1955). Production of some organic compounds under possible primitive earth conditions. J. Am. chem. Soc. 77, 2351.CrossRefGoogle Scholar
Nakamoto, T., Conway, T., Allende, J., Spyrides, G. & Lipmann, F. (1963). Formation of peptide bonds. I. Peptide formation from aminoacyl-sRNA. Cold Spring Harb. Symp. quant. Biol. 28, 227.CrossRefGoogle Scholar
Nichols, J. L. (1970). Nucleotide sequence from the polypeptide chain termination region of the coat protein cistron in bacteriophage R17 RNA. Nature, Lond. 225, 147.CrossRefGoogle ScholarPubMed
Nirenberg, M. W. & Matthaei, J. H. (1961). The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. natn. Acad. Sci. U.S.A. 47, 1588.CrossRefGoogle ScholarPubMed
Nirenberg, M. W., Jones, O. W., Leder, P., CLARK, B. F. C.Sly, W. S. & Pestka, S. (1963). On the coding of genetic information. Cold Spring Harb. Symp. quant. Biol. 28, 549.CrossRefGoogle Scholar
Nirenberg, M. & Leder, P. (1964). The effect of trinucleotides upon the binding of sRNA to ribosomes. Science, N.Y. 145, 1399.CrossRefGoogle ScholarPubMed
Nirenberg, M., Caskey, T., Marshall, R., Brimacombe, R., Kellogg, D., Doctor, B., Hatfield, D., Levin, J., Rottman, F., Pestka, S., Wilcox, M. & Anderson, F. (1966). The RNA code and protein synthesis. Cold. Spring Harb. Symp. quant. Biol. 31, 11.CrossRefGoogle ScholarPubMed
Orgel, L. E. (1968). Evolution of the genetic apparatus. J. molec. Biol. 38, 381.CrossRefGoogle ScholarPubMed
Oro, J. (1965). The Origin of Prebiological Systems and of Their Molecular Matrices, p. 137. New York: Academic Press.CrossRefGoogle Scholar
Rottman, F. & Cerutti, P. (1966). Template activity of uridylic aciddihydro uridylic acid copolymers. Proc. natn. Acad. Sci. U.S.A. 55, 960.CrossRefGoogle ScholarPubMed
Rudland, P. S. & Dube, S. K. (1969). Specific interaction of an initiator tRNA fragment with 30S ribosomal subunits. J. molec. Biol. 43, 273.CrossRefGoogle Scholar
Rushizky, G. W. & Sober, H. A. (1962). Characterization of the major compounds in ribonuclease T1 digests of ribonucleic acid: I. J. biol. Chem. 237, 834.CrossRefGoogle Scholar
Sambrook, J. F., Fan, D. P. & Brenner, S. A. (1967). A strong suppressor specific for UGA. Nature, Lond. 214, 452.CrossRefGoogle Scholar
Sanger, F., Brownlee, G. G. & Barrell, B. G. (1965). A two-dimensional fractionation procedure for radioactive nucleotides. J. molec. Biol. 13, 373.CrossRefGoogle ScholarPubMed
Schmidt, G., Cubiles, R., Zollner, N., Hecht, L., Strickler, N., Seraidarian, K., Seraidarian, M. & Thannhauser, S. J. (1951). On the action of ribonuclease. J. biol. Chem. 192, 715.CrossRefGoogle ScholarPubMed
Scolnick, E., Tompkins, R., Caskey, T. & Nirenberg, M. (1968). Release factors differing in specificity for terminator codons. Proc. natn. Acad. Sci. U.S.A. 61, 768.CrossRefGoogle ScholarPubMed
Scolnick, E. M. & Caskey, C. T. (1969). The role of release factors in mRNA terminator codon recognition. Proc. natn. Acad. Sci. U.S.A. 64, 1235CrossRefGoogle ScholarPubMed
Singer, M. F. & Guss, J. K. (1962). The dependence of reactions catalyzed by polynucleotide phosphorylase on oligonucleotides. J. biol. Chem. 237, 182.CrossRefGoogle ScholarPubMed
Smrt, J., Kemper, W., Caskey, T. & Nirenberg, M. (1970). Template activity of modified terminator codons. J. biol. Chem. (in the Press).CrossRefGoogle ScholarPubMed
Söll, D., Ohtsuka, E., Jones, D. S., Lohrmann, H. H., Nishimura, S. & Khorana, H. G. (1965). Stimulation of binding of aminoacyl-sRNA's to ribosomes by ribotrinucleotides and a survey of codon assignments for 20 amino acids. Proc. natn. Acad. Sci. U.S.A. 54, 1378.CrossRefGoogle Scholar
Speyer, J. F., Lengyel, P., Basilio, C., Wahba, A. J., Gardner, R. S. & Ochoa, S. (1963). Synthetic polynucleotides and the amino acid code. Cold Spring Harb. Symp. quant. Biol. 28, 559.CrossRefGoogle Scholar
Steitz, J. A. (1969). Polypeptide chain initiation. Nucleotide sequences of the three ribosomal sites in bacteriophage R17 RNA. Nature, Lond. 224, 957.CrossRefGoogle ScholarPubMed
Thach, R. E., Dewey, K. F. & Mykolajewyez, N. (1967). Role of guanosine 5′-tri-phosphate in the initiation of peptide synthesis. II. Synthesis of dipeptides. Proc. natn. Acad. Sci. U.S.A. 57, 1103.CrossRefGoogle Scholar
Thiebe, R. & Zachau, H. G. (1969). Acceptor activity in homologous and heterologous combination of half molecules from and Biochem. biophys. Res. Commun. 36, 1024.CrossRefGoogle Scholar
Tompkins, R., Scolnick, E. & Caskey, C. T. (1970). The ribosomal and release factor requirements for peptide release. Proc. natn. Acad. Sci. U.S.A. (in the Press).CrossRefGoogle ScholarPubMed
Webster, R. E., Engelhardt, D. L. & Zinder, N. D. (1966). In vitro protein synthesis: Chain initiation. Proc. natn. Acad. Sci. U.S.A. 55, 155.CrossRefGoogle ScholarPubMed
Weigert, M. G. & Garen, A. (1965). Base composition of non-sense codons in E. coli. Nature, Land. 206, 992.CrossRefGoogle Scholar
Wilcox, M. & Nirenberg, M. W. (1968). Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc. natn. Acad. Sci. U.S.A. 61, 229.CrossRefGoogle ScholarPubMed
Woese, C. R. (1965). On the evolution of the genetic code. Proc. natn. Acad. Sci. U.S.A. 54, 1546.CrossRefGoogle ScholarPubMed
Woese, C. (1967). The Genetic Code. New York: Harper and Row.Google Scholar
Woese, C. R. (1968). The fundamental nature of the genetic code: Prebiotic inactions between polynucleotides and polyamino acids or their derivatives. Proc. natn. Acad. Sci. U.S.A. 59, 110.CrossRefGoogle ScholarPubMed
Zipser, D. (1967). UGA: A third class of suppressible polar mutants. J. molec. Biol. 29, 441.CrossRefGoogle Scholar