Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-27T22:04:54.890Z Has data issue: false hasContentIssue false

Primordial organic chemistry and the origin of life

Published online by Cambridge University Press:  17 March 2009

Cyril Ponnamperuma
Affiliation:
Exobiology Division, NASA Ames Research Center, Moffett Field, California, and Department of Biological Sciences, Stanford University, Stanford, California

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Review Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banda, P. & Ponnamperuma, C. (1971). Polypeptides from the condensation of amino acid adenylates. Space Life Sets, (in the Press).Google ScholarPubMed
Barghoorn, E. S. & Schopf, J. W. (1966). Microorganisms three billion years old from the Precambrian of South Africa. Science, N.Y. 152, 758763.CrossRefGoogle ScholarPubMed
Berkner, L. V. & Marshall, L. C. (1965). On the origin and rise of oxygen concentration in the earth's atmosphere. J. Atmos. Sci. 22, 225261.2.0.CO;2>CrossRefGoogle Scholar
Berthelot, M. (1868). Cosmologie – Sur la matière charbonneuse des météorites. C. r. hebd. Séanc Acad. Sci., Paris 67, 849.Google Scholar
Berzelius, J. J. (1834). Über Meteorsteine. Ann. Phys. Chem. 33, 113.CrossRefGoogle Scholar
Brown, H. (1952). Rare gases and the formation of the Earth's atmosphere. In Kuiper, G. P. (ed.), The Atmospheres of the Earth and Planets, 2nd ed., pp. 258266. Chicago: University Press.Google Scholar
Butlerow, A. (1861). Bildung einer Zuckerartiken Substanz durch Synthese. Justus Liebigs Annln Chem. 120, 295.CrossRefGoogle Scholar
Calvin, M. (1956). Chemical evolution and the origin of life. Am. Scient. 44, 248263.Google Scholar
Chadha, M., Lawless, J., Flores, J. & Ponnamperuma, C. (1970). Experiments in simulated Jovian atmospheres. In Buvet, R. and Ponnamperuma, C. (eds.), Molecular Evolution, vol. 1, Amsterdam: North-Holland.Google Scholar
Chang, S., Flores, J. & Ponnamperuma, C. (1969). Peptide formation mediated by hydrogen cyanide tetramer: a possible prebiotic process. Proc. natn. Acad. Sci. U.S.A. 64, 10111015.CrossRefGoogle ScholarPubMed
Chang, S., Kvenvolden, K., Lawless, J., Ponnamperuma, C. & Kaplan, I. R. (1971). Carbon, carbides, and methane in an Apollo 12 sample. Science, N.Y. 171, 474477.CrossRefGoogle Scholar
Chang, S., Williams, J., Ponnamperuma, C. & Rabinowitz, J. (1970). Phosphorylation of uridine with inorganic phosphates. Space Life Sci. 2, 144150.Google ScholarPubMed
Cheung, A. C., Rank, D. M., Townes, C. H., Thornton, D. D. & Welch, W. J. (1968). Detection of NH3 molecules in the interstellar medium by their microwave emission. Phys. Rev. Lett. 21, 17011705.CrossRefGoogle Scholar
Cheung, A. C., Rank, D. M., Townes, C. H., Thornton, D. D. & Welch, W. J. (1969). Detection of water in interstellar regions by its microwave radiation. Nature, Lond. 221, 626628.CrossRefGoogle Scholar
Conant, J. B. (ed.) (1959). Pasteur's and Tyndall's Study of Spontaneous Generation. Cambridge: Harvard University Press.Google Scholar
De Beer, G. (1959). Some unpublished letters of Charles Darwin. In Notes and Records of the Royal Society, London.Google Scholar
Degens, E. T. (1965). Geochemistry of Sediments: A Brief Survey. Englewood Cliffs: Prentice-Hall.CrossRefGoogle Scholar
Dicke, R. H. (1962). Dating the galaxy by uranium decay. Nature, Lond. 194, 329330.CrossRefGoogle Scholar
Donn, B. (1968). Polycyclic hydrocarbons, platt particles, and interstellar extinction. Astrophys. J. 152, L129L133.CrossRefGoogle Scholar
Donn, B. (1970). Organic molecules in space. In Ponnamperuma, C. (ed.), Exobiology. Amsterdam: North-Holland. (In the Press.)Google Scholar
Eglinton, G. & Calvin, M. (1967). Chemical fossils. Scient. Am. 216, 3243.CrossRefGoogle Scholar
Engel, A. E., Nagy, B., Nagy, L. A., Engel, C. G., Kremp, C. W. W. & Drew, C. M. (1968). Alga-like forms in Onverwacht Series, South Africa: oldest recognized lifelike forms on earth. Science, N.Y. 161, 10051008.CrossRefGoogle ScholarPubMed
Fruton, S. & Simmonds, S. (1961). General Biochemistry. New York: John Wiley and Sons.Google Scholar
Gabel, N. W. & Ponnamperuma, C. (1967). Model for the origin of monosaccharides. Nature, Lond. 216, 453455.CrossRefGoogle ScholarPubMed
Gallet, R. M. (1963). In The Planet Jupiter (Proceedings: ed. Smith, H. J.et al.). Physics Today 16, 19.Google Scholar
Haldane, J. B. S. (1928). The origin of life. Rationalist Annual 148, 310.Google Scholar
Huang, S. S. (1959). Occurrence of life in the universe. Am. Scient. 47, 397402.Google Scholar
Hutchinson, G. E. (1954). The biochemistry of the terrestrial atmosphere. In Kuiper, G. P. (ed.), The Solar System. Vol. 11. The Earth as a Planet, pp. 371433. Chicago: University Press.Google Scholar
Johnson, F. M. (1965). Diffuse interstellar lines and the chemical characterization of interstellar dust. In Greenberg, J. M. and Roark, T. P. (eds.), Interstellar Grains, pp. 229240. NASA SP-140, Washington, D.C.Google Scholar
Johnson, F. M. (1967). Interstellar matter. In Enzmann, R. D. (ed.), Use of Space Systems and Planetary Geology and Geophysics, pp. 5166. American Astronautical Society and New England Academic Community, Regional Symposium of Planetary Geology and Geophysics, Boston, Mass., May 25–27, 1967. Volume 17, AAS Science and Technology Series; AAAS Publ. Office, Tarzana, Calif.Google Scholar
Kaplan, I. R. & Smith, J. W. (1970). Concentration and isotopic composition in lunar material. Science, N.Y. 167, 541543.CrossRefGoogle Scholar
Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I. & Moore, C. (1970). Evidence for extraterrestrial amino acids and hydrocarbons in the Murchison meteorite. Nature, Lond. 228, 923926.CrossRefGoogle ScholarPubMed
Kvenvolden, K., Lawless, J. G. & Ponnamperuma, C. (1971). Non-protein amino acids in the Murchison meteorite. Proc. natn. Acad. Sci. U.S.A. 68, 486490.CrossRefGoogle Scholar
Miller, S. L. (1955). Production of some organic compounds under possible primitive earth conditions. J. Am. chem. Soc. 77, 23512361.CrossRefGoogle Scholar
Miller, S. L. & Urey, H. C. (1959). Organic compound synthesis on the primitive earth. Science, N.Y. 130, 245251.CrossRefGoogle ScholarPubMed
Noda, H. & Ponnamperuma, C. (1970). Polymer formation in a simulated Jovian atmosphere. In Buvet, R. and Ponnamperuma, C. (eds.), Molecular Evolution, 1. Amsterdam: North-Holland.Google Scholar
Oparin, A. I. (1924). Proischogdenie Zhizni. Moscovsky Robotchii, Moscow.Google Scholar
Peebles, P. J. E. (1964). The structure and composition of Jupiter and Saturn. Astrophys. J. 140, 328.CrossRefGoogle Scholar
Pirie, N. W. (1937). The meaningless of the terms life and living. In Needham, J. and Green, D. (eds.), Perspectives in Biochemistry, pp. 1122. New York: Macmillan.Google Scholar
Ponnamperuma, C. (1963). A possible prebiotic synthesis of purines. Abst. 19th Int. Congr. Pure Appl. Chem., London, 1017 July, 1963.Google Scholar
Ponnamperuma, C. & Klein, H. P. (1970). The coming search for life on Mars. Q. Rev. Biol. 45, 235258.CrossRefGoogle ScholarPubMed
Ponnamperuma, C., Kvenvolden, K., Chang, S., Johnson, R., Pollock, G., Philpott, D., Kaplan, I., Smith, J., Schopf, J. W., Gehrke, C., Hodgson, G., Breger, I. A., Halpern, B., Duffield, A., Krauskopf, K., Barghoorn, E., Holland, H. & Keil, K. (1970). Search for organic compounds in the lunar dust from the Sea of Tranquillity. Science, N. Y. 167, 760762.CrossRefGoogle Scholar
Ponnamperuma, C., Lemmon, R. M., Mariner, R. & Calvin, M. (1963). Formation of adenine by electron irradiation of methane, ammonia and water. Proc. natn. Acad. Sci. U.S.A. 49, 737740.CrossRefGoogle ScholarPubMed
Ponnamperuma, C. & Mack, R. (1965). Nucleotide synthesis under possible primitive earth conditions. Science, N.Y. 148, 12211233.CrossRefGoogle ScholarPubMed
Ponnamperuma, C. & Mariner, R. (1963). Formation of adenosine by ultraviolet irradiation of a solution of adenine and ribose. Nature, Lond. 198, 11991200.CrossRefGoogle ScholarPubMed
Ponnamperuma, C. & Peterson, E. (1965). Peptide synthesis from amino acids in aqueous solution. Science, N.Y. 147, 15721574.CrossRefGoogle ScholarPubMed
Ponnampercma, C., Woeller, F., Flores, J., Romiez, M. & Allen, W. V. (1969). Synthesis of organic compounds by the action of electric discharges in simulated primitive atmospheres. Adv. in Chem. Ser. 80, 280288.CrossRefGoogle Scholar
Russell, H. N. (1935). The Solar System and Its Origin. New York: Macmillan.Google Scholar
Sanchez, R. A., Ferris, J. & Orgel, L. E. (1966). Conditions for purine synthesis: Did prebiotic synthesis occur at low temperatures ? Science, N.Y. 153, 7273.CrossRefGoogle ScholarPubMed
Saxinger, W., Ponnamperuma, C. & Woese, C. (1970). Nucleic acid–amino acid interactions, nucleotide–amino amide binding studies. Abstr. 160th National Meeting of the Am. Chem. Soc., Chicago, Ill., Section o61.Google Scholar
Schwartz, A. & Ponnamperuma, C. (1968). Phosphorylation of adenine with linear polyphosphate salts in aqueous solution. Nature, Lond., 218, 443.CrossRefGoogle ScholarPubMed
Shapley, H. (1958). Of Stars and Men. Boston: Beacon Press.Google Scholar
Smith, J. W. & Kaplan, I. R. (1970). Endogenous carbon in carbonaceous meteorites. Science, N.Y. 167, 13671370.CrossRefGoogle ScholarPubMed
Snyder, L. E. & Buhl, D. (1969). Water-vapour clouds in the interstellar medium. Astrophys. J. 155, L65L70.CrossRefGoogle Scholar
Snyder, L. E., Buhl, D., Zuckerman, B. & Palmer, P. (1969). Microwave detection of interstellar formaldehyde. Phys. Rev. Lett. 22, 679681.CrossRefGoogle Scholar
Stern, H. (1955). On the intranuclear environment. Science, N.Y. 121, 144145.CrossRefGoogle ScholarPubMed
Swings, P. & Haser, L. (1956). Atlas of Representative Cometary Spectra. University of Liége Astrophysical Institute, Louvain.Google Scholar
Thompson, B. A., Harteck, P. & Reeves, R. R. Jr. (1963). Ultraviolet absorption coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2 and CH4 between 1850 and 4000 Å. J. Geophys. Res. 68, 64316436.CrossRefGoogle Scholar
Tilton, G. R. & Steiger, R. H. (1965). Lead isotopes and the age of the earth. Science, N.Y. 150, 18051808.CrossRefGoogle ScholarPubMed
Urey, H. C. (1956). Regarding the early history of the earth's atmosphere. Bull. geol. Soc. Am. 67, 11251128.CrossRefGoogle Scholar
Watanabe, K., Zelikoff, M. & Inn, E. C. Y. (1953). Absorption coefficients of several atmospheric gases. AFCRC Tech. Rep. 5323 Geophysical Research Paper, June 1953.Google Scholar
Woeller, F. W. & Ponnamperuma, C. (1969). Organic synthesis in a simulated Jovian atmosphere. Icarus 10, 386392.CrossRefGoogle Scholar
Wöhler, M. F. & Hörnes, M. (1859). Die Organische Substanz in Meteorsteine von Kaba. Sber. Akad. Wiss. Wien (Math.-Naturw. Kl.) 34, 7.Google Scholar