Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-17T06:00:51.809Z Has data issue: false hasContentIssue false

The possibilities and prospects of obtaining high-resolution information (below 30 Å) on biological material using the electron microscope

Some comments and reports inspired by an EMBO workshop held at Gais, Switzerland, October 1973

Published online by Cambridge University Press:  17 March 2009

M. Beer
Affiliation:
Reprint requests to: E. Kellenberger, Biozentrum der Universität Abt. Mikrobiologie, 4056 Basel, Switzerland.
J. Frank
Affiliation:
Reprint requests to: E. Kellenberger, Biozentrum der Universität Abt. Mikrobiologie, 4056 Basel, Switzerland.
K.-J. Hanszen
Affiliation:
Reprint requests to: E. Kellenberger, Biozentrum der Universität Abt. Mikrobiologie, 4056 Basel, Switzerland.
E. Kellenberger
Affiliation:
Reprint requests to: E. Kellenberger, Biozentrum der Universität Abt. Mikrobiologie, 4056 Basel, Switzerland.
R. C. Williams
Affiliation:
Reprint requests to: E. Kellenberger, Biozentrum der Universität Abt. Mikrobiologie, 4056 Basel, Switzerland.

Extract

Commercially available electron microscopes routinely provide resolution of some 2–4 Å, as determined on the spacing of crystalline lattices of certain stable, small-molecular substances. On biological material either macromolecules or macromolecular assemblies— ‘biologically significant’ details below some 20 Å have hitherto not been observed.we consider as ‘biologically significant’ those structural details observed or contained in electronmicrographs which are consistent with, or confirmed by, other data obtained from biochemical or functional experiments or by other physical methods (optical, magnetic, electric).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abermann, R., Salpeter, M. M. & Bachmann, L. (1972). High resolution shadowing. Principles and Techniques of Electron Microscopy, vol. 2 (ed. Hayat, M. A.), pp. 196219. Van Nostrand Reinhold.Google Scholar
Ade, G. (1972). Non-linear problems in bright and dark field imaging. Optik (in the Press).Google Scholar
Aebi, U., Smith, P. R., Dubochet, J., Henry, C. & Kellenberger, E. (1973). A study of the structure of the T-layer of Bacillus brevis. J. Supramol. Str. I, 498522.CrossRefGoogle Scholar
Anderson, T. F. (1951). Techniques for the preservation of 3-dimensioned structure in preparing specimens for the electron microscope. Trans. N.Y. Acad. Sci. 13, 130–4.CrossRefGoogle Scholar
Anderson, T. F.Some fundamental limitations to the preservation of 3-dimensional specimens for the electron microscope. Trans. N. Y. Acad. Sci. 16, 242–9.CrossRefGoogle Scholar
Bachmann, L. & Schmitt, W. W. (1971). Improved cryofixation applicable to freeze-etching. Proc. natn. Acad. Sci. U.S.A. 68, 2149–52.CrossRefGoogle ScholarPubMed
Bachmann, L. & Schmitt-fumian, W. W. (1973). Spray-freeze-etching of dissolved macromolecules, emulsions and subcellular components. Symp. Cryodécapage, Paris 1972 (ed. Favard, R.). Soc. Française Microsc. Electronique.Google Scholar
Bahr, G. F., Johnson, F. B. & Zeitler, E. (1965). The elementary composition oforganic objects after electron irradiation. Lab. Invest. 14, 1115–33.Google Scholar
Baumeister, W. & Hann, M. H. (1973 a). Elektronenmikroskopische Untersuchungen bei atomarer Auflösung an Modelimembranen. Cytobiologie 7, 244–67.Google Scholar
Baumeister, W. & Hahn, M. H. (1973 b). Electron microscopy of monomolecular layers of thorium atoms. Nature, Lond. 241, 445–7.CrossRefGoogle Scholar
Baumeister, V. & Hahn, M. H. (1973 c). Vermiculite single layers. J. Microscopy (in the Press).Google Scholar
Brakenhoff, G. J. (1974). On the sub-nanometre structure visible in high- resolution dark field electron microscopy. J. Microscopy 100, 283–98.CrossRefGoogle Scholar
Bussler, P., Feltynowski, A. & Hoppe, W. (1972). Reconstruction of the complex image function from electron micrographs. Proc. Vth Europ. Congr. Electron Microsc., Manchester, 626–9.Google Scholar
Crewe, A. V. (1970). Visibility of single atoms. Science, N.Y. 168, 1338–40.CrossRefGoogle ScholarPubMed
Crowther, R. A. & Amos, L. A. (1971). Three-dimensional image reconstructions of some small spherical viruses. Cold Spring Harb. Symp. Quant. biol. 36, 489–94.CrossRefGoogle Scholar
Crowther, R. A., Amos, L. A. & Klug, A. (1972). Three-dimensional image reconstruction using functional expansions. Proc. Vth Europ. Congr. Electron Microsc., Manchester, pp. 593–7.Google Scholar
Crowther, R. A., Derosier, D. J. rosier, D. J. & Klug, A. (1970). The reconstruction of a 3-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. A 317, 319–40.Google Scholar
Derosier, D. J. rosier, D. J. & Klug, A. (1968). Reconstruction of 3-dimensional structures from electron micrographs. Nature, Lond. 217, 130–4.Google Scholar
Downing, K. H. (1972). Compensation of lens aberrations by single- sideband holography 30th Ann. Proc. EMSA, 562–3.Google Scholar
Downing, K. H. & Siegel, B. M. (1973 a). Phase shift determination in single-sideband holography. Optik 38, 21–8.Google Scholar
Downing, K. H. & Siegel, B. M. (1973 b). Object wave determination by single sideband methods. 31st Ann. Proc. EMSA, 266–7.CrossRefGoogle Scholar
Dubochet, J. & Kellenberger, E. (1972). Electron adsorption of particles to the support film and its consequences on particle counts in electron microscopy,. Microscopica Acta 72, 119–30.Google Scholar
Elliott, A. (1974). The arrangement of myosin on the surface of paramyosin filaments in the white adductor muscle of Crassostrea Angulata. Proc. R. Soc. Lond. B 186, 5366.Google ScholarPubMed
Elliott, A. & Offer, J. (1974). Unpublished results.Google Scholar
Erickson, H. P. (1973). The Fourier transform of an electron micrograph - First-order and second-order theory of image formation, Adv. Opt. electron Microsc. 5, 163–99.Google Scholar
Erickson, H. P. (1974). Microtubule surface lattice and subunit structure. J. Cell Biol. (in the Press).Google Scholar
Erickson, H. P. & Klug, A. (1970). The Fourier transform of an electron micrograph: effects of defocussing and aberrations, and implications for the use of underfocus contrast enhancement. Ber. Bunsenges physik Chem. 74, 1129–37.CrossRefGoogle Scholar
Erickson, H. P. & Klug, A. (1971). Measurement and compensation of defocussing and aberrations by Fourier processing of electron micro- graphs. Phil. Trans. R. Soc. Lond. B 261, 105–18.Google Scholar
Feltinowski, A. & Hoppe, W. (1973). Point resolution beyond the Scherzer limit in electron micrographs. Joint Session on Electron Microscopy, Liège.Google Scholar
Ferwerda, H. A. (1974). Reconstruction of a weak phase-amplitude object from one or two exposures. (To be published.)Google Scholar
Ferwerda, H. A. & Hoenders, B. J. (1974 a). Theory of the reconstruction of a weak phase object in the case of non-isoplanatic imaging. Optica Acta (in the Press).Google Scholar
Ferwerda, H. A. & Hoenders, B. J. (1974 b). Theory of a weak phase- amplitude object IV. Optik 39, 317–26.Google Scholar
Frank, J. (1972). A study on heavy/light atom discrimination in bright-field electron microscopyusing the computer. Biophys, J. 12, 484511.CrossRefGoogle Scholar
Frank, J. (1973 a). Use of anomalous scattering for element discrimination. Image Processing and Computer-Aided Design in Electron Optics (ed. Hawkes, P. W.), pp. 196211. London: Academic Press.Google Scholar
Frank, J. (1973 b). A remark on phase determination in electron microscopy. Optik 38, 582–84.Google Scholar
Frank, J. (1973 c). The envelope of electron microscopic transfer functions for partially coherent illumination. Optik 38, 519–36.Google Scholar
Frank, J., Bussler, P. H., Lancer, R. & Hoppe, W. (1970). Einige Erfahrungen mit der rechnerischen Analyse und Synthese von elektronen mikroskopischen Bildern hoher Auflösung. Ber. Bunsenges. 74, 1105–15.CrossRefGoogle Scholar
Fromme, H. G., Pfautsch, M., Pfefferkorn, G. & Bystricky, V. (1972). Die ‘kritische Punkt’ Trocknung als Preparationsmethode für die Rasterelektronenmikroskopie. Microscopica Acta 73, 2937.Google Scholar
Gerchberg, R. W. (1972). Holography without fringes in the electron microscope. Nature, Lond. 240, 404–6.CrossRefGoogle ScholarPubMed
Gerchberg, R. W. & Saxton, W. O. (1972). A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–46.Google Scholar
Glaeser, R. N. (1971). Limitations to significant information in biological electron microscopy as aresult of radiation damage. J. Ultrastruct. Res. 36, 466–82.CrossRefGoogle Scholar
Glaeser, R. M., Kuo, I. & Budinger, T. F. (1971). Method for processing of periodicimages at reduced levels of electron irradiation. 29th Ann. Proc. EMSA, 466–7.Google Scholar
Hahn, M. H. (1972). An optical high-resolution spatial filtering and correlation unit for processingof electron micrographs. Optik 35, 326–37.Google Scholar
Hahn, M. H. & Baumeister, W. (1973) Possibilities and limitations for electron microscopical imaging of single atoms in sub- and supramolecular systems. Cytobiologie 7, 224–43.Google Scholar
Hanszen, K.-J. (1969). Problems of image interpretation in electron microscopy with linear and non-linear transfer. Z. angew. Phys. 27, 125–31.Google Scholar
Hanszen, K.-J. (1970). In-line holographic reconstruction methods in electron microscopy. Proc. VIIth Int. Congr. Electron Microsc., Grenoble, vol. I, pp. 21–2.Google Scholar
Hanszen, K.-J. (1971). The optical transfer theory of the electron microscope: Fundamental principles and applications. Adv. Opt. & Electron Microsc. 4, 184.Google Scholar
Hanszen, K.-J. (1973 a). Contrast transfer and image processing. In ‘Image Processing and Computer Aided Design in Electron Optics’ (ed. Hawkes, P. W.), 1653. London: Academic Press.Google Scholar
Hanszen, K.-J. (1973 b). Neuere theoretische Erkenntnisse und praktische Erfahrungen uber die holographische Rekonstruktion elektronenmikroskopischer Aufnahmen. Physikalisch-Technischen Bundesanstalt als PTB-Bericht A Ph. 4, Braunschweig.Google Scholar
Hanszen, K.-J. & Ade, G. (1974 a). Problems and results of the optical transfer theory and of reconstruction methods in electron microscopy. Physikalisch-Technischen Bundesanstalt als PTB-Bericht A Ph. 5, Braunschweig.Google Scholar
Hanszen, K.-J. & Ade, G. (1974 b). Is it possible to describe the incoherent dark field imaging by transfer functions? Optik (in the press).Google Scholar
Hanszen, K.-J. & Ade, G. (1975). Die Bedeutung der Envelope von Übertragungsfunktionen bei partiell köharenter Beleuchtung. Optik (in preparation).Google Scholar
Hanszen, K.-J. & Trepte, L. (1971). The contrast transfer of the electron microscope with partial coherent illumination. Part A. The ring condensor. Part B: Disc-shaped source. Optik 33, 16681, 182–98.Google Scholar
Harrison, S. C. (1971). Structure of tomato bushy stunt virus: 3-dimensional X-ray diffraction analysis at 30 Å resolution. Cold Spring Harb. Symp. Quant. Biol. 36, 495501.CrossRefGoogle Scholar
Hashimoto, H. et al. (1973). Visualization of single atoms in molecules and crystals bydark-field electron microscopy. J. Electron Microsc. 22, 123–34.Google Scholar
Henkelmann, R. M. (1973). Ph.D. Thesis, University of Toronto.Google Scholar
Hoenders, B. J. (1972). On the reconstruction of a weak phase-amplitude object: II. Optik 35, 116–33.Google Scholar
Hoenders, B. J. & Ferwerda, H. A. (1973 a). On the reconstruction of a weak phase-amplitude object: II. Optik 37, 542–56.Google Scholar
Hoenders, B. J. & Ferwerda, H. A. (1973 b). On the reconstruction of a weak phase-amplitude object: III. Optik 38, 8094.Google Scholar
Hoppe, W. (1970). Principles of electron structure research at atomic resolution using conventional electron microscopes for the measurement of amplitudes and phases. Acta crystallogr. A26, 414–26.CrossRefGoogle Scholar
Hoppe, W. (1971). Zur ‘Abbildung’ komplexer Bildfunktionen in der Elektronenmikroskopie. Z. Naturf. A26, 1155–68.CrossRefGoogle Scholar
Hoppe, W. (1972). Recording processing and correction of electron microscope images. Proc. 5th Eur. Reg. Congr. Electron Microsc., Manchester, pp. 612–17.Google Scholar
Hoppe, W., Langer, R. & Thon, F. (1970). Methods for reconstruction of complex image functions in electron microscopy. Optik 30, 538–45.Google Scholar
Hoppe, W. & Köstler, D. (1973). The inference of chromatic aberration and partial coherence for image reconstruction with tilted illumination. Joint session on Electron Microscopy, Li´ge.Google Scholar
Hoppe, W., Bussler, P., Feltynowski, A., Hunzmann, N. & Hirt, A. (1973). Some experiences with computerized reconstruction methods. Image Processing and Computer-Aided Deszgn in Electron Optics (ed. Hawkes, P. W.), 92126. Academic Press (London).Google Scholar
Horne, R. W. & Ronchetti, I. P. (1974). A negative staining carbon film technique for studying viruses in the electron microscope. I. Preparative procedures for examining icosahedral filamentous viruses. J. Ultrastruct. Res. 47, 361–83.CrossRefGoogle ScholarPubMed
Klug, A. (1971). Optical diffraction and filtering and three-dimensional reconstructions from electron micrographs. Phil. Trans. R. Soc. Lond. B 261, 173–9.Google Scholar
Klug, A. & Crowther, R. A. (1972). Three-dimensional image reconstruction from the viewpoint of information theory. Nature, Lond. 238, 435–40.CrossRefGoogle Scholar
Klug, A. & Derosier, D. J. rosier, D. J. (1966). Optical filtering of electron micro- graphs: reconstruction of one-sided images. Nature, Lond. 212, 2932.CrossRefGoogle Scholar
Koller, TH., Sogo, J. M. & Bujard, H. (1974). An electron microscopic method for studying nucleic acid-protein complexes. Visualization of E. coli RNA polymerase and T7 and T3 DNA. J. Polym. Sci. D (in the Press).Google Scholar
Komoda, T., Nishida, I. & Kimoto, K. (1969). Beryllium single crystal flakes as substrates for high resolution electron microscopy. J. appl. Phys. 8, 1164.CrossRefGoogle Scholar
Krakow, W., Downing, K. & Siegel, B. (1973). A technique for the rapid determination of the contrast transfer characteristic of an electron microscope. 31st Ann. Proc. EMSA, 278–9.CrossRefGoogle Scholar
Krakow, W., Downing, K. & Siegel, B. M. (1974) The use of tilted specimen to obtain the contrast transfer characteristics of an electron microscope imaging system. Optik 40, 1Google Scholar
Krakow, W., & Siegel, B. M. (1972). Characteristics of an electrostatic phase plate. 30thAnn. Proc. EMSA, 618–19.CrossRefGoogle Scholar
Lohmann, A. (1959). Aktive Kontrastübertragungenstheorie. Optica Acta 6 39–37.CrossRefGoogle Scholar
Maréchal, P. & Croce, A.Un filtre de fréquénces spatiales pour l'amélioration du contraste des images optiques. C. r. hebd. Seanc. Acad. Sci. Paris 237, 607–9.Google Scholar
Markham, R., Frey, S. & Hills, G. J. (1963). Methods for the enhancement of image detail and accentuation of structure in electron microscopy. Virology 20, 88102.CrossRefGoogle Scholar
Matricardi, V. R., Moretz, R. C. & Parsons, D. F. (1972). Electron diffraction of wet proteins: catalase. Science, N. Y. 177, 268–70.CrossRefGoogle ScholarPubMed
Misell, D. L. & (1973) A method for the solution of the phase problem in electron microscopy. J. Phys. D. 6, L6–L9.Google Scholar
Misell, D. L. & Burge, R. E. (1973). Limitations of image information due to inelastic electron scattering. Image Processing and Computer-Aided Design in Electron Optics (ed. Hawkes, P. W.), 168–95. Academic Press(London).Google Scholar
Misell, D. L., Burge, R. E. & Greenaway, A. H. (1974). Phase determination from image intensity measurements in bright-field optics, J. Phys. D 7, L7–L30.Google Scholar
Müller, M. & Koller, Th. (1972). Preparation of aluminium oxide films for high-resolution electron microscopy. Optik 35, 287–9.Google Scholar
Ottensmeyer, F. P. (1969). Macromolecular fine structure by dark-field electron microscopy. Biophys, J. 9, 1144–9.CrossRefGoogle Scholar
Ottensmeyer, F. P., Schmidt, E. E. & Olbrecht, A. J. (1973). Image of sulfur atom. Science, N.Y. 179, 175–6.CrossRefGoogle ScholarPubMed
Ottensmeyer, F. P., Schmidt, E. E., Jack, T. & Powell, J. (1972). Molecular architecture: the optical treatment of dark-field electron micro- graphs of atoms. J. Ultrastruct. Res. 40, 546–55.CrossRefGoogle Scholar
Parsons, D. F., Matricardi, V. R., Moretz, R. C. & Tuner, J. N. (1973 a). Electron microscopy and diffraction of wet, unstained and unfixed biological objects. Adv. biol. med. Phys. 15 (in the Press).CrossRefGoogle Scholar
Parsons, D. F., Matricardi, V. R. & Uydess, I. (1973 b). High-voltage electron microscopy of wet whole cancer and normal cells. II. Influence of specimen preparation conditions. J. Microscopy (inthe ress.)CrossRefGoogle Scholar
Riddle, G. H. N. & Siegel, B. M. (1971). Thin pyrolytic graphite films for electron microscope substrates. 29th Ann. Proc. EMSA, 226–7.Google Scholar
Rose, H. (1974). Phase contrast in the scanning transmission electron microscope. Optik 39, 416–36.Google Scholar
Saxton, W. O. (1974). Phase determination in bright-field electron microscopy using complementary half-plane apertures. J. Phys. D. 7, 63–4.Google Scholar
Schiske, P. (1968). Zur Frage der Bildrekonstruktion durch Fokusreihen. Proc. IVth Eur. Reg. Congr. Electron Microsc., Rome, vol. I, 145–6.Google Scholar
Schiske, P. (1973). Image Processing using additional statistical information about the object. In ‘Image processing and computer aided design’ (ed. Hawkes, P. W.), 8290. Academic Press (London).Google Scholar
Schiske, P. (1974.). Ein- und Mehrdeutigkeit der Phasenbestimmung aus Bud und Beugungsfigur. Optik. 40 261–75.Google Scholar
Schwertfeger, W. (1974). Zur Kleinwinkel streuung von mittelschnellen Elektronen beim Durchgang durch amorphe Festkörperschichten. Thesis, University of Tübingen.Google Scholar
Sjöstrand, F. S. & Barajas, L. (1968). Effect of modifications in conformations of protein molecules on structure of mitochondrial membranes, J. Ultrastruct. Res. 25, 121–55.CrossRefGoogle ScholarPubMed
Sjöstrand, F. S. & Barajas, L. (1970). A new model for mitochondrial membranes based on structural and on biochemical information. J. Ultrastruct. Res. 32, 293306.CrossRefGoogle ScholarPubMed
Slepian, D. (1964). Prolate Spheroidal wave functions, Fourier analysis and uncertainty. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell. Syst. tech. J. 43, 3009–57.CrossRefGoogle Scholar
Smith, P. R. & Aebi, U. (1973). Appendix of ‘A study of the structure of the T-layer of Bacillus brevis’ J. Supramol. Struct. II, 516–22.Google Scholar
Tanford, C., Buckley, C. E., Paritosh, K. D. & Lively, E. P. (1962). Effect of ethylene glycol on the conformation of γ-globulin and β-lactalbumin, J. biol. Chem. 237, 1168–71CrossRefGoogle Scholar
Thach, R. E. & Thach, S. S. (1971). Damage to biological samples caused by the electron beam during electron microscopy. Biophys, J. II 204–10.CrossRefGoogle Scholar
Thon, F. (1965). Elektronenmikroskopische Untersuchungen an dünnen Kohlefolien. Z. Naturf. A20, 154–5.CrossRefGoogle Scholar
Thon, F. & Siegel, B. M. (1970). Zonal filtering in optical reconstruction of high-resolution phase-contrast images. VIIth hit. Congr. Electron Microsc., Grenoble, vol. I, pp. 1314.Google Scholar
Thon, F. & Willasch, D. (1972). Imaging of heavy atoms in dark field electron microscopyusing hollow cone illumination. Optik 36, 55–8.Google Scholar
Unwin, P. N. T. (1971). Phase contrast and interference microscopy with the electron microscope. Phil. Trans. R. Soc. Lond. B 261 95104.Google ScholarPubMed
Unwin, P. N. T. (1972). Electron microscopy of biological specimens by means of an electrostatic phase plate. Proc. R. Soc. Lond. A 329, 327–9.Google Scholar
Voter, W. A. (1973). Thesis: Duke University Physics DeptGoogle Scholar
Wall, J. (1972). Mass and mass loss measurements on DNA and fd phage. 30th Ann. Proc. EMSA, 186–7.CrossRefGoogle Scholar
Welton, T. A. (1971). Computational correction of aberrations in electron microscopy. 29th Ann. Proc. EMSA, 94–5.CrossRefGoogle Scholar
Welton, T. A. (1974). Electron-optical factors limiting resolution in transmission electron microscopy. (To be published.)Google Scholar
White, J. R., Beer, M. & Wiggins, J. W. (1971). Preparation of smooth graphite support films for high resolution electron microscopy. Micron 2, 412–27.Google Scholar
Whiting, R. F. & Ottensmeyer, F. P. (1972). Heavy atoms in model compounds and nucleic acids imaged by dark-field transmission electron microscopy. J. molec. Biol. 67, 173–81.CrossRefGoogle ScholarPubMed
Wiener, N. (1949). The extrapolation, interpolation and smoothing of stationary time series, p.175. New York: J. Wiley.CrossRefGoogle Scholar
Willasch, D. (1973). Versuche zur Kontrastverbesserung in der Elektronenmikroskopie durch Heilfeldabbildung mittels Phasenplatten und Dunkelfeldabbildung hei hohlkegelförmiger Beleuchtung. Thesis. Tübingen.Google Scholar
Williams, R. C. (1952). A method of freeze-drying for electron microscopy. Expi Cell. Res. 4, 188201.CrossRefGoogle Scholar
Williams, R. C. & Gleaser, R. M. (1972). ‘Ultrathin’ carbon support films for electron microscopy. Science, N.Y. 175, 1000–I.CrossRefGoogle ScholarPubMed
Williams, R. C. & Fisher, H. W. (1970). Electron microscopy of TMV under conditions of minimal beam exposure. J. molec. Biol. 52, 121–3.CrossRefGoogle Scholar