Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-29T17:07:32.709Z Has data issue: false hasContentIssue false

Perturbed angular correlation spectroscopy and its application to metal sites in proteins: possibilities and limitations

Published online by Cambridge University Press:  17 March 2009

Rogert Bauer
Affiliation:
Department of Physics, The Royal Veterinary and Agricultural University, DK-1871, Copenhagen V, Denmark

Extract

The present review describes the methodology of perturbed angular correlation of gamma rays (PAC) applied to biological problems. A large part of the present review focuses on the application of PAC spectroscopy to the study of coordination geometry for the metal site in zinc enzymes. Applications to conformation and dynamics of biomolecules and the use of the method to identify the intracellular sites of either metals or labelled proteins are also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adloff, J. P. (1978). Application to chemistry of electric quadrupole perturbation of angular correlations. Radiochim. Acta 25, 5774.CrossRefGoogle Scholar
Andersson, I., Bauer, R. & Demeter, I. (1982). Structural information concerning the catalytic metal site in horse liver alcohol dehydrogenase, obtained by perturbed angular correlation spectroscopy on 111Cd. Inorg. chim. Acta 67, 5359.CrossRefGoogle Scholar
Argos, P., Garavito, R. M., Eventoff, W., Rossmann, M. G. & Bränden, C. I. (1978). Similarities in active center geometries of zinc-containing enzymes, proteases and dehydrogenases. J. molec. Biol. 126, 141158.CrossRefGoogle ScholarPubMed
Armitage, I. M., Pajer, R. T., Schoot Uiterkamp, A. J. M., Chlebow-Ski, J. F. & Coleman, J. E. (1976). Cadmium-113 Fourier transform nuclear magnetic resonance of cadmium(II) carbonic anhydrases and cadmium (II) alkaline phosphatase. J. Am. chem. Soc. 98, 57105712.CrossRefGoogle ScholarPubMed
Auld, D. S. & Holmquist, B. (1974). Carboxypeptidase A. Differences in the mechanisms of ester and peptide hydrolysis. Biochemistry 13, 43554361.CrossRefGoogle ScholarPubMed
Auld, D. S. & Vallee, B. L. (1970). Kinetics of carboxypeptidase A. The pH dependence of tripeptide hydrolysis catalyzed by zinc, cobalt, and manganese enzymes. Biochemistry 9, 43524359.CrossRefGoogle Scholar
Bakka, A., Eriksen, D., Rugstad, H. E. & Bauer, R. (1982). Identification of cadmium binding sites within living human cells by perturbed angular correlation spectroscopy. FEBS Litt. 139, 5760.CrossRefGoogle ScholarPubMed
Bauer, R., Christensen, C., Johansen, J. T., Bethune, J. L. & Vallee, B. L. (1979 b). Perturbed angular correlation ray (PAC) spectroscopy of 111Cd carboxypeptidase A. Biochem. biophys. Res. Commun. 90, 679685.CrossRefGoogle ScholarPubMed
Bauer, R., Christensen, C. & Larsen, E. (1979 a). Determination of the electric field gradients for the two different nuclear sites of the cadmium atoms in bis(thiosemicarbazide) cadmium(11) sulfate using perturbed angular correlation spectroscopy on the 111Cd isotope. J. chem. Phys. 70, 41174122.CrossRefGoogle Scholar
Bauer, R., Demeter, I., Hasemann, V. & Johansen, J. T. (1980). Structural properties of the zinc site in Cu, Zn-superoxidase dismutase; perturbed angular correlation of gamma ray spectroscopy on the Cu, 111Cd-superoxide dismutase derivative. Biochem. biophys. Res. Commun. 94, 12961302.CrossRefGoogle Scholar
Bauer, R., Johansen, J. & Limkilde, P. (1978). Information about the geometry and mechanism of the metal ion in a metalloenzyme obtained from PAC experiments. Hyperfine Interactions 4, 906909.CrossRefGoogle Scholar
Bauer, R., Limkilde, P. & Glomset, O. (1974). Metal site structure in a protein studied by perturbed angular correlations. Phys. Rev. Lett. 32, 340342.CrossRefGoogle Scholar
Bauer, R., Limkilde, P. & Johansen, J. T. (1976). Low and high pH form of cadmium carbonic anhydrase determined by nuclear quadropole interaction. Biochemistry 15, 334342.CrossRefGoogle Scholar
Bauer, R., Limkilde, P. & Johansen, J. T. (1977). Metal coordination geometry and mode of action of carbonic anhydrase. Effect of imidazole on the spectral properties of Co(11) and 111Cd(II) human carbonic anhydrase B. Carlsberg Res. Comm. 42, 325339.CrossRefGoogle Scholar
Bertini, I., Luchinat, C. & Scozzafava, A. (1981). Carbonic anhydrase: an insight into the zinc binding site and into the active cavity through metal substitution. Struct. Bond. 48, 4592.CrossRefGoogle Scholar
Bobsein, B. R. & Myers, R. J. (1981). Cadmium-113 NMR binary and ternary complexes of cadmium-substituted horse liver alcohol de-hydrogenase. J. biol. Chem. 256, 53135316.CrossRefGoogle Scholar
Bobsein, B. R. & Myers, R. J. (1980). Cadmium-113 NMR spectrum of substituted horse liver alcohol dehydrogenase. J. Am. chem. Soc. 102, 24542455.CrossRefGoogle Scholar
Butz, T., Lerf, A. & Huber, R. (1982). Intramolecular reorientational motion in trypsinogen studied by perturbed angular correlation of 199Hg Labels. Phys. Rev. Lett. 48, 890893.CrossRefGoogle Scholar
Butz, T., Lerf, A. & Huber, R. (1983). Hyperfine interaction investigations of the internal dynamics of biomolecules. Hyperfine Interactions 16, 869879.CrossRefGoogle Scholar
Cass, A. E. G., Hill, H. A. O., Hasemann, V. & Svendsen, I. (1978). 1H nuclear magnetic resonance spectroscopy of yeast copper-zinc Superoxide dismutase. Structural homology with the bovine enzyme. Carlsberg Res. Comm. 43, 439449.CrossRefGoogle Scholar
Christensen, C. (1979). Perturbed angular correlation spectroscopy on carboxypeptidase. Master Thesis, Niels Bohr Institute, Denmark.Google Scholar
Ciampolini, M. (1969). Spectra of 3d five-coordinate complexes. Struct. Bond. 6, 5294.CrossRefGoogle Scholar
Coleman, J. E. (1980). Current concepts of the mechanism of action of carbonic anhydrase. In Proceedings in Life Sciences: Biophysics and Physiology of Carbon Dioxide, pp. 133149.CrossRefGoogle Scholar
Demille, G. R., Larlee, K., Livesey, D. L. & Mailer, K. (1979). Conformational change in carbonic anhydrase studied by perturbed directional correlations of gamma rays. Chem. Phys. Lett. 64, 534539.CrossRefGoogle Scholar
Drum, D. E., Harrison, J. H., Li, T. K., Bethune, J. L. & Vallee, B. L. (1967). Structural and functional zinc in horse liver alcohol dehydrogenase. Proc. natn. Acad. Sci. U.S.A. 57, 14341439.CrossRefGoogle ScholarPubMed
Dunbar, J. C., Holmquist, B. & Johansen, J. T. (1984 a). Asymmetric site structures in yeast dicopper dizinc Superoxide dismutase. I. Reconstitution of apo-superoxide dismutase. Biochemistry 23, 43244330.CrossRefGoogle Scholar
Dunbar, J. C., Holmquist, B. & Johansen, J. T. (1984 b). Asymmetric active site structures in yeast dicopper dizinc Superoxide dismutase. 2. pH-dependent incorporation of cobalt into the metal binding sites. Biochemistry 23, 43304335.CrossRefGoogle Scholar
Dunbar, J. C., Johansen, J. T. & Uchida, T. (1982). Kinetics of metal dissociation in the yeast Superoxide dismutase. Apparent asymmetry in the metal binding sites. Carlsberg Res. Commun. 47, 163171.CrossRefGoogle Scholar
Dunn, M. F. (1975). Mechanisms of zinc ion catalysis in small molecules and enzymes. Struct. and Bond. 23, 61123.CrossRefGoogle Scholar
Eklund, H. & Bränden, C. I. (1983). The role of zinc in alcohol dehydrogenase. In Zinc Enzymes. New York: John Wiley.Google Scholar
Feiock, F. D. & Johnson, W. R. (1969). Atomic susceptibilities and shielding factor. Phys. Rev. 187, 3950.CrossRefGoogle Scholar
Ferentz, M. & Rosenzweig, N. (1966). Tables of angular correlation coefficients. In Alpha, Beta and Gamma spectroscopy, pp. 16871690. Amsterdam: North Holland.Google Scholar
Flook, R. J., Freeman, H. C., Moore, C. J. & Scudder, M. L. (1973). Model compounds for metal-protein interaction: Crystal structures of seven cadmium(II) complexes of amino-acids and peptides. J. chem. Soc. chem. Commun., pp. 753754.CrossRefGoogle Scholar
Frauenfelder, H. & Steffen, R. M. (1966). Angular correlations. In Alpha, Beta and Gamma Spectroscopy, pp. 9971198. Amsterdam: North Holland.Google Scholar
Galdes, A., Auld, D. S. & Vallee, B. L. (1983). Cryokinetic studies of the intermediates in the mechanism of carboxypeptidase A. Biochemistry 22, 18881893.CrossRefGoogle ScholarPubMed
Gavish, B. & Werber, M. M. (1979). Viscosity-dependent structural fluctuations in enzyme catalysis. Biochemistry 18, 12691275.CrossRefGoogle ScholarPubMed
Glass, J. C. & Graf, G. (1970). Directional correlation studies of anomalous water in carbonic anhydrase. Nature 226, 635636.CrossRefGoogle ScholarPubMed
Haas, H. & Shirley, D. A. (1973). Nuclear quadrupole interaction studies by perturbed angular correlations. J. chem. Phys. 58, 33393355.CrossRefGoogle Scholar
Harrison, L. W. & Vallee, B. L. (1978). Kinetics of substrate and product interactions with arsanilazotyrosine-248 carboxypeptidase A. Biochemistry 17, 43594363.CrossRefGoogle ScholarPubMed
Johansen, J. T. & Vallee, B. L. (1971). Differences between the conformation of arsanilazotyrosine 248 of carboxypeptidase A in the crystalline state and in solution. Proc. natn. Acad. Sci. U.S.A. 68, 25322535.CrossRefGoogle ScholarPubMed
Jonsson, N. B. H., Tibell, L. A. E., Evelhoch, J. L., Bell, S. J. & Sudmeier, J. L. (1980). Proc. natn. Acad. Sci. U.S.A. 77, 32693277.CrossRefGoogle Scholar
Kalfas, C. A., Sideris, E. G. & El-Kateb, S., Martin, P. W. & Kuhnlein, U. (1980). Determination of rotational correlation times from perturbed angular correlations of γ-rays. 111In bound to single-stranded DNA Cu(II). Chem. Phys. Lett. 73, 311314.CrossRefGoogle Scholar
Kannan, K. K., Notstrand, B., Fridborg, K., Lovgren, S., Ohlsson, A. & Petef, M. (1975). Crystal structure of human erythrocyte carbonic anhydrase B. Three-dimensional structure at a nomial 2·2-Å resolution. Proc. natn. Acad. Sci. U.S.A. 72, 5155.CrossRefGoogle Scholar
Kannan, K. K., Petef, K., Fridborg, H., Cid-Dresdner, H. & Lovgren, S. (1977). Structure and function of carbonic anhydrases. Imidazole binding to human carbonic anhydrase B and the mechanism of action of carbonic anhydrases. FEBS Lett. 73, 115119.Google ScholarPubMed
Khalifah, R. G. (1971). Carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. biol. Chem. 246, 25612573.CrossRefGoogle ScholarPubMed
Kincaid, B. M. & Shulman, R. G. (1980). On the resolution of metal-ligand distances in metalloproteins by EXAFS. Adv. Inorg. Biochem. 2, 303309.Google Scholar
Lanir, A., Gradstajn, S. & Navon, G. (1975). Temperature and frequency dependence of solvent proton relaxation rates in solutions of manganese(II) carbonic anhydrase. Biochemistry 14, 242248.CrossRefGoogle ScholarPubMed
Larsen, E. & La Mar, G. N. (1974). Angular overlap model. How to use it and why. J. chem. Educ. 51, 633640.CrossRefGoogle Scholar
Latt, S. A. & Vallee, B. L. (1971). Spectral properties of cobalt carboxypeptidase. The effects of substrates and inhibitors. Biochemistry 10, 42634270.CrossRefGoogle ScholarPubMed
Leipert, T. K., Baldeschwieler, J. D. & Shirley, D. A. (1968). Applications of gamma ray angular correlations to the study of biological macromolecules in solutions. Nature 200, 907909.CrossRefGoogle Scholar
Liljas, A., Kannan, K. K., Bergsten, P. C., Waara, I., Fridborg, K., Strandberg, B., Carlbom, U., Jarup, L., Lovgren, S. & Petef, M. (1972). Crystal structure of human carbonic anhydrase C. Nature (New Biol.) 235, 131137.CrossRefGoogle ScholarPubMed
Lindskog, S. (1970). Cobalt(II) in metalloenzymes. A reporter of structure–function relations. In Struct. Bond. 8, 153196.CrossRefGoogle Scholar
Lindskog, S. (1983). Carbonic anhydrase. In Zinc Enzymes, pp. 77123. New York.Google Scholar
Lindskog, S., Henderson, L. E., Kannan, K. K., Liljas, A., Nyman, P. O. & Strandberg, B. (1971). Enzymes, 3rd ed., vol. 5, pp. 587665.CrossRefGoogle Scholar
Lindskog, W. & Nyman, P. O.(1964). Metal binding properties of human erythrocyte carbonic anhydrases. Biochim. biophys. Acta 85, 462474.Google ScholarPubMed
Maret, W., Andersson, I., Dietrich, H., Schneider-Bernlohr, H., Einarsson, R. & Zeppezauer, M. (1979). Site-specific substituted cobalt(II). Horse liver alcohol dehydrogenases. Eur. J. Biochem. 98, 501512.CrossRefGoogle ScholarPubMed
Marshall, A. G., Lee, K. M. & Martin, P. (1980). Determination of rotational correlation time from perturbed angular correlations of γ-rays: apomyoglobin reconstituted with 111 In(III) mesoprotoporphyrin IX. J. Am. Chem. Soc. 102, 14601462.CrossRefGoogle Scholar
Marshall, A. G., Lee, K. M. & Martin, P. (1983). Motional freedom of the central metal atom in apohemoglobin reconstituted with 111In: protoporphyrin IX. Time differential perturbed gamma-ray angular correlations. J. chem. Phys 78, 15281532.CrossRefGoogle Scholar
Marshall, A. G., Werbelow, L. G. & Meares, C. F. (1972). Effect of molecular shape and flexibility on gammaray directional correlations. J. chem. Phys. 57, 364370.CrossRefGoogle Scholar
Martin, P. W., El-Kateb, S. & Kuhnlein, U. (1982). Conformational changes in supercoiled DNA: 111In-histone as a label for perturbed γ-γ angular correlation studies. J. chem. Phys. 76, 38193822.CrossRefGoogle Scholar
Martin, P. W., Kalfas, C. A. & Skov, K. (1978). Molecular dynamics of polyglutamic acid studied by perturbed angular correlation of gamma rays. J. chem. Phys. 69, 19581960.CrossRefGoogle Scholar
Mauk, M. R., Gamble, R. C. & Baldeschwieler, J. D. (1980). Targeting of lipid vesicles: Specificity of carbohydrate receptor analogs for leukocytes in mice. Proc. natn. Acad. Sci. U.S.A. 77, 44304434.CrossRefGoogle ScholarPubMed
Meares, C. F., Bryant, R. G., Baldeschwieler, J. D. & Shirley, D. A. (1969). Study of carbonic anhydrase using perturbed angular correlations of gamma radiation. Proc. natn. Acad. Sci. U.S.A. 64, 11551161.CrossRefGoogle ScholarPubMed
Meares, C. F. & Westmoreland, D. G. (1971). The study of biological macromolecules using perturbed angular correlations of gamma radiations. Cold Spring Harb Symp. quant. Biol. 36, 511520.CrossRefGoogle Scholar
Mullins, O. C. & Kaplan, M. (1983). Perturbed angular correlation studies of indium metalloporphyrin complexes. J. chem. Phys. 79, 44754488.CrossRefGoogle Scholar
Nakagawa, S., Umeyama, H., Kitaura, K. & Morokuma, K. (1981). A molecular orbital study on the zinc-water-Glu 270 system in carboxypeptidase. Chem. pharm. Bull. Tokyo 29, 16.CrossRefGoogle Scholar
Pandian, S., Mathias, C. J. & Welch, M. J. (1982). Perturbed angular correlation studies of 111In-labelled platelets. Int. J. appl. Radtat, Isot. 33, 3337.CrossRefGoogle ScholarPubMed
Phillips, J. C., Bauer, R., Dunbar, J. & Johansen, J. T. (1984). A proposal for the metal geometry in yeast Superoxide dismutase based on results from EXAFS spectroscopy. J. Inorg. Biochem. 22, 179186.CrossRefGoogle ScholarPubMed
Pocker, Y. & Sarkanen, S. (1978). Carbonic anhydrase: Structure, catalytical versatility and inhibition. Adv. Enzymol. 47, 149274.Google ScholarPubMed
Quiocho, F. A. & Lipscomb, W. M. (1971). Carboxypeptidase A: a protein and an enzyme. Adv. Protein Chem. 25, 159.CrossRefGoogle ScholarPubMed
Rees, D. C., Lewis, M., Honzatko, R. B., Lipscomb, W. N. & Hardman, K. D. (1981). Zinc environment and cis peptide bonds in carboxy-peptidase A at 1·75 Å resolution. Proc. natn. Acad. Sci. U.S.A. 78, 34083412.CrossRefGoogle Scholar
Rigler, R. & Ehrenberg, M. (1976). Fluorescence relaxation spectroscopy in the analysis of macromolecular structure and motion. Q. Rev. Biophys. 9, 119.CrossRefGoogle Scholar
Rinneberg, H. H. (1979). Application of perturbed angular correlations to chemistry and related areas of solid state physics. Atomic Energy Rev. 17, 477595.Google Scholar
Sasstry, K. S. R., Hallee, G. J., Ottlinger, M. E. & Westhead, E. W. (1978). Some biophysical applications of perturbed gamma-ray angular correlations. Hyperfine Interactions 4, 891905.CrossRefGoogle Scholar
Schaeffer, C. E. (1968). A perturbation of weak covalent bonding. Struct Bond 5, 6896.CrossRefGoogle Scholar
Schaeffer, C. E. (1973). Two symmetry parameterizations of the angular-overlap model of the ligand-field. Struct. Bond 14, 69111.CrossRefGoogle Scholar
Shirley, D. A. (1971). Influence of molecular geometry, orientation, and dynamics on angular correlation patterns from rotationally labeled macromolecules. J. chem. Phys. 55, 15121521.CrossRefGoogle Scholar
Spiro, T. G. (1983). Zinc Enzymes. New York: John Wiley.Google Scholar
Sytkowski, A. J. & Vallee, B. L. (1978). Cobalt exchange in horse liver alcohol dehydrogenase. Biochemistry 17, 28502857.CrossRefGoogle ScholarPubMed
Sytkowski, A. J. & Vallee, B. L. (1979). Cadmium-109 as a probe of the metal binding sites in horse liver alcohol dehydrogenase. Biochemistry 18, 40954100.CrossRefGoogle ScholarPubMed
Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S. & Richardson, D. C. (1982). Determination and analysis of the 2 Å structure of copper, zinc superoxidase dismutase. J. molec. Biol. 160, 181217.CrossRefGoogle Scholar
Tainer, J. A., Getzoff, E. D., Richardson, J. S. & Richardson, D. C. (1983). Structure and mechanism of copper, zinc Superoxide dismutase. Nature 306, 284292.CrossRefGoogle ScholarPubMed
Tibell, L. (1984). Studies of native and Cd(II) substituted carbonic anhydrases with special reference to their interaction with inhibitors. Umeaa Ph.D. thesis 1984.Google Scholar
Tibell, L. & Lindskog, S. (1984). Catalytic properties and inhibition of Cd(II) carbonic anhydrases. Biochim. biophys. Acta. (In the Press.)Google Scholar
Uiterkamp, A. J. M. S., Armitage, I. M. & Coleman, J. E. (1980). Cadmium-113 nuclear magnetic resonance of mammalian erythrocyte carbonic anhydrases. J. biol. Chem. 255, 39113917.CrossRefGoogle Scholar
Vallee, B. L. (1983). Zinc in biology and biochemistry. In Zinc Enzymes, pp. 125. New York: John Wiley.Google Scholar
Vallee, B. L., Galdes, A., Auld, D. & Riordan, J. F. IN Zinc Enzymes, pp. 2577. New York: John Wiley.Google Scholar
Vasak, M. & Bauer, R. (1982). Evidence for two types of binding sites. J. Am. chem. Soc. 104, 32363238.CrossRefGoogle Scholar
Winkler, H. & Gerdau, E. (1973). γ-γ angular correlations perturbed by stochastic fluctuating fields. Z. Phys. 262, 363376.CrossRefGoogle Scholar
Wyeth, P. & Prince, R. H. (1977). Carbonic anhydrase. Inorg. Perspect. Biol. Med. 1, 3771.Google Scholar
Yates, M. J. L. (1966). Finite solid angle corrections. In Alpha, Beta and Gamma Spectroscopy, pp. 16911703. Amsterdam: North Holland.Google Scholar