Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T05:11:24.278Z Has data issue: false hasContentIssue false

Lineages, quantal cell cycles, and the generation of cell diversity

Published online by Cambridge University Press:  17 March 2009

H. Holtzer
Affiliation:
Department of Anatomy, School of Medicine, University of Pennsylvania, Philadelphia, Pa. 19174
N. Rubinstein
Affiliation:
Department of Anatomy, School of Medicine, University of Pennsylvania, Philadelphia, Pa. 19174
S. Fellini
Affiliation:
Department of Anatomy, School of Medicine, University of Pennsylvania, Philadelphia, Pa. 19174
G. Yeoh
Affiliation:
Department of Anatomy, School of Medicine, University of Pennsylvania, Philadelphia, Pa. 19174
J. Chi
Affiliation:
Department of Anatomy, School of Medicine, University of Pennsylvania, Philadelphia, Pa. 19174
J. Birnbaum
Affiliation:
Department of Anatomy, School of Medicine, University of Pennsylvania, Philadelphia, Pa. 19174
M. Okayama
Affiliation:
Department of Anatomy, School of Medicine, University of Pennsylvania, Philadelphia, Pa. 19174

Abstract

Most theories of determination or differentiation assume that embryonic cells differ from mature cells. Embryonic cells are thought to have metastable control mechanisms. These labile controls are believed to become progressively more stabilized as the cells differentiate. Zygote, blastula, neural plate, limb bud, somite, or ‘stem’ cells are conceived of as undifferentiated, totipotent, or multipotential cells. As such, these cells supposedly have available for activation a larger repertoire of phenotypic programmes than their progeny. A necessary corollary to this view is that the activation of one particular phenotypic programme out of the many available is a function of instructive exogenous inducing molecules.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, J. & Holtzer, H. (1968). The loss of phenotypic traits by differentiated cells. V. The effects of 5-bromodeoxyuridine on clonal chondrocytes. Proc. natn. Acad. Sci. U.S.A. 59, 1144.CrossRefGoogle Scholar
Abbott, J., Mayne, R. & Holtzer, H. (1972). Inhibition of cartilage development in organ cultures by the thymidine analogue 5-bromodeoxyuridine. Devl Biol. 28, 430.CrossRefGoogle Scholar
Abbott, J., Schiltz, J., Dienstman, D. & Holtzer, H. (1974). The phenotypic complexity of myogenic clones. Proc. natn. Acad. Sci. U.S.A. 71, 1506.CrossRefGoogle ScholarPubMed
Austin, P. E., McCulloch, E. A. & Till, J. E. (1971). Characterization of the factor in L-cell conditioned medium capable of stimulating colony formation by mouse marrow cells in culture. J. Cell Physiol. 77, 121.CrossRefGoogle ScholarPubMed
Bag, J., Roy, K., Sutton, A. & Sarkar, S. (1975). Regulation of messenger RNA translation during myogenesis: Non-polysomal cytoplasmic messenger ribonucleoprotein particles in embryonic chicken muscles. In Regulation of Growth and Differentiated Functions in Eukaryote Cells (ed. Talwar, G. P.). New York: Raven Press.Google Scholar
Balazs, E. (ed). (1970). Chemistry and Molecular Biology of the Intracellular Matrix, vol. v, pp. 13. New York: Academic Press.Google Scholar
Birnbaum, J., Yeoh, G. & Holtzer, H. (1975). Changes in non-histone proteins during myogenesis. (Submitted.)Google Scholar
Bischoff, R. & Holtzer, H. (1970). Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyuridine. J. Cell Biol. 44, 134.CrossRefGoogle ScholarPubMed
Bischoff, R. & Lowe, M. (1974). Cell surface components and the interaction of myogenic cells. In Exploratory Concepts in Muscular Dystrophy, vol. II (ed. Milhorat, A. T.), p. 17. Amsterdam: Excerpta Medica.Google Scholar
Bryant, P. J. (1974). Determination and pattern formation in the imaginal discs of Drosophila. Curr. Top. Devl Biol. 8, 41.CrossRefGoogle ScholarPubMed
Buckingham, M. F., Caput, D., Cohen, A., Whalen, R. G. & Gros, F. (1974). The synthesis and stability of cytoplasmic messenger RNA during myoblast differentiation in culture. Proc. natn. Acad. Sci. U.S.A. 71, 1466.CrossRefGoogle ScholarPubMed
Buckley, P. A. & Konigsberg, I. R. (1974). Myogenic fusion and the duration of the post-mitotic gap (G1). Devl Biol. 37, 193.CrossRefGoogle ScholarPubMed
Campbell, G., Weintraub, H., Mayall, B. & Holtzer, H. (1971). Primitive erythropoiesis in early chick embryogenesis. II. J. Cell Biol. 50, 669.CrossRefGoogle ScholarPubMed
Campbell, , Lem., G., Weintraub, H., Holtzer, H. & Mayhall, B. H. (1974) Primitive erythropoiesis in chick erythrogenesis. III. J. Cell Physiol. 83, 11.CrossRefGoogle Scholar
Caplan, A. & Koutroupas, S. (1973). The control of muscle and cartilage development in the chick limb: the role of differential vascularization. J. Embryol. exp. Morph. 29, 571.Google ScholarPubMed
Caplan, A. I. & Rosenberg, M. J. (1975). The control of chondrogenic and myogenic expression in chick limb mesodermal cells. In Extracellular Matrix Influences on Gene Expression (ed. Slavkin, H. and Greulich, R.). New York: Academic Press.Google Scholar
Carlson, E. (1974). Intercellular connective tissue fibrils in the notochordal epithelium of the early chick embryo. Amer. J. Anat. 136, 77.CrossRefGoogle Scholar
Chacko, S., Abbott, J., Holtzer, S. & Holtzer, H. (1969). The loss of phenotypic traits by differentiated cells. VI. Behaviour of the progeny of a single chondrocyte. J. exp. Med. 130, 417.CrossRefGoogle ScholarPubMed
Chang, C. S. & Goldwasser, E. (1973). On the mechanism of erythropoietin induced differentiation. XII. A cytoplasmic protein mediating induced nuclear RNA synthesis. Devl Biol. 34, 246.CrossRefGoogle ScholarPubMed
Chi, J. H. C., Fellini, S. & Holtzer, H. (1975 a). Differences among the myosins synthesized in non-muscle cells, presumptive myoblasts and myoblasts. Proc. natn. Acad. Sci. U.S.A. (Dec. issue).CrossRefGoogle Scholar
Chi, J., Rubinstein, N., Strahs, K. & Holtzer, H. (1975 b). The synthesis of myosin heavy and light chains in muscle cultures. J. Cell Biol. (Nov. issue).CrossRefGoogle Scholar
Cohen, I. & Cohen, C. J. (1972). A tropomyosin-like protein from human platelets. J. Molec. Biol. 68, 383.CrossRefGoogle ScholarPubMed
Croop, J. & Holtzer, H. (1975). Response of myogenic and fibrogenic cells to cytochalasin B and colcemid. J. Cell Biol. 65, 271.CrossRefGoogle ScholarPubMed
Dienstman, S. R., Biehl, J., Holtzer, S. & Holtzer, H. (1974). Myogenic and chondrogenic lineages in developing limb buds grown in vitro. Devl Biol. 39, 83.CrossRefGoogle ScholarPubMed
Dienstman, S. R. & Holtzer, H. (1975). Myogenesis: a cell lineage interpretation. In Cell Cycle and Cell Differentiation (eds. Reinert, J. and Holtzer, H.). Berlin: Springer-Verlag.Google Scholar
Doering, J. L. & Fischman, D. A. (1974). The in vitro cell fusion of embryonic chick muscle without DNA synthesis. Devl Biol. 36, 225.CrossRefGoogle ScholarPubMed
Elzinga, M. & Collins, J. H. (1973). The amino acid sequence of rabbit skeletal muscle actin. Cold Spring Harb. Symp. quant. Biol. 37, 1.CrossRefGoogle Scholar
Fell, H. B. & Mellanby, E.Metaplasia produced in cultures of chick ectoderm by high vitamin A. J. Physiol. 119, 470.CrossRefGoogle Scholar
Fine, R. E., Blitz, A. L., Hitchcock, S. E. & Kaminer, B. (1973). Tropomyosin in brain and growing neurons. Nature New Biol. 245, 182.CrossRefGoogle Scholar
Franco-browder, S., Derydt, J. & Dorfman, A. (1963). The identification of a sulfated mucopolysaccharide in chick embryos stages 11–23. Proc. natn. Acad. Sci., U.S.A. 49, 643.CrossRefGoogle ScholarPubMed
Friend, C., Scher, W., Holland, J. G. & Sato, T. (1971). Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc. natn. Acad. Sci. U.S.A. 68, 378.CrossRefGoogle ScholarPubMed
Garcia-bellido, A. (1972). Pattern formation in imaginal disks. Res. Prob. Cell Diff. 5,59.Google Scholar
Garcia-bellido, A. (1975). In Cell Patterning, Ciba Foundation Symp. 29, Amsterdam: Excerpta Medica.Google Scholar
Gehring, W. (1972). The stability of the determined state in cultures of imaginal disks in Drosophila. Res. Prob. Cell Diff. 5, 35.Google Scholar
Gordon, A. S. (1971). The Regulation of Hematopoiesis. New York: AppletonCentury-Crofts.Google Scholar
Grobstein, C. (1975). Developmental Role of Intracellular Matrix: Retrospective and Prospective. In Extracellular Matrix Influences on Gene Expression (ed. Slavkin, A. and Greulich, R.). New York: Academic Press.Google Scholar
Groudine, M., Holtzer, H., Scherrer, K. & Therwah, A. (1974). Lineage-dependent transcription of globin genes. Cell 3, 243.CrossRefGoogle ScholarPubMed
Hagopian, H. K., Lippke, J. A. & Ingram, V. (1972). Erythropoietic cell cultures from chick embryos. J. Cell Biol. 54, 98.CrossRefGoogle ScholarPubMed
Hauschka, S. D. & Konigsberg, I. R. (1966). The influence of collagen on the development of muscle colonies. Proc. natn. Acad. Sci. U.S.A. 55, 119.CrossRefGoogle Scholar
Hay, E. D. & Meier, S. (1974). Glycosaminoglycan synthesis by embryonic inductors: neural tube, notochord, and lens. J. Cell Biol. 62, 889.CrossRefGoogle ScholarPubMed
Holtzer, H. (1961). Aspects of Chondrogenesis and Myogenesis. In The 19th Growth Symposium (ed. Rudnick, D.), p.35NewYork: Ronald Press.Google Scholar
Holtzer, H. (1963). Comments on induction in cell differentiation. In Induktion und Morphogenese, 13th Colloq. Gesell. Physiol. Chemie, p. 217. Berlin: Springer-Verlag.Google Scholar
Holtzer, H. (1964). Control of chondrogenesis in the embryo. Biophys. J. 4, 237.CrossRefGoogle ScholarPubMed
Holtzer, H. (1968). Induction of chondrogenesis: a concept in quest of a mechanism. In Epithelial-mesenchymal Interactions (ed. Fleischmajer, R. F. and Billingham, R. E.). Baltimore: Williams and Wilkins Co.Google Scholar
Holtzer, H. (1970). Myogenesis. In Cell Differentiation (ed. Schjeide, O. A. and de Vellis, J.), p. 476. New York: Van Nostrand.Google Scholar
Holtzer, H. & Abbott, J. (1968). Oscillations of the chondrogenic phenotype in vitro. In The Stability of the Differentiated State (ed. Ursprung, H.). Heidelberg: Springer-Verlag.Google Scholar
Holtzer, H. & Detwiler, S. (1953). An experimental analysis of the development of the spinal column. III. Induction of skeletogenous cells. J. exp. Zool. 123, 335.CrossRefGoogle Scholar
Holtzer, H., Biehl, J., Yeoh, G., Meganathan, R. & Kajl, A. (1975 a). Effect of oncogenic virus on muscle differentiation. Proc. natn. Acad. Sci. U.S.A. (Oct. issue.)CrossRefGoogle Scholar
Holtzer, H., Marshall, J. M. & Finck, H. (1957). An analysis of myogenesis by the use of fluorescent antimyosin. J. biophys. biochem. Cytol. 3, 705.CrossRefGoogle ScholarPubMed
Holtzer, H. & Matheson, D. (1970). Induction of chondrogenesis in the embryo. In Chemistry and Molecular Biology of the Intracellular Matrix (ed. Balazs, E. A.). New York: Academic Press.Google Scholar
Holtzer, H. & Mayne, R. (1973). Experimental morphogenesis: The induction of somitic chondrogenesis by embryonic spinal cord and notochord. In Pathobiology of Development (ed. Perrin, E. V. and Finegold, M. J.). Baltimore: Williams and Wilkins Co.Google Scholar
Holtzer, H., Mayne, R., Weintraub, H. & Cambell, G. (1973 a). Obligatory requirement for DNA synthesis during myogenesis, erythrogenesis and chondrogenesis. In The Biochemistry of Gene Expression in Higher Organisms (ed. Pollack, J. K. and Lee, J. Wilson). Australia and New Zealand Book Co.Google Scholar
Holtzer, H., Strahs, K., Biehl, J., Somlyo, A. P. & Ishikawa, H. (1975 b). Thick and thin filaments in postmitotic, mononucleated myoblasts. Science, N.Y. 188, 943.CrossRefGoogle ScholarPubMed
Holtzer, H., Croop, J., Dienstman, S., Ishikawa, H. & Somlyo, A. (1975 c). Effects of Cytochalasin B and Colcemide on myogenic cultures. Proc. natn. Acad. Sci. U.S.A. 72, 513.CrossRefGoogle ScholarPubMed
Holtzer, H., Weintraub, H., Mayne, R. & Mochan, B. (1973 b). The cell cycle, cell lineages, and cell differentiation. Curr. Top. Devl Biol. 7, 229.CrossRefGoogle Scholar
Holtzer, S. (1955). The inductive activity of the spinal cord in urodele tail regeneration. J. Morph. 99, 1.CrossRefGoogle Scholar
Huang, D. (1974). Effect of extracellular chondroitin sulfate on cultured chondrocytes. J. Cell Biol. 62, 881.CrossRefGoogle ScholarPubMed
Hunt, R. K. (1975). The cell cycle, cell lineage, and neuronal specificity. In Cell Cycle and Cell Differentiation (eds. Reinert, J. and Holtzer, H.). Springer-Verlag, Berlin.Google Scholar
Ikawa, Y., Furusawa, M. & Sugano, H. In Unifying Concepts of Leukemia (ed. Dutcher, R. and Chieco-Bianchi, L.), 39, 955. Basel: Karger.Google Scholar
Ishikawa, H., Biscuoff, R. & Holtzer, H. (1969). Formation of arrow-head complexes with heavy meromyosin in a variety of cell types. J. Cell Biol. 43, 312.CrossRefGoogle Scholar
Kaufmann, S. A. (1973). Control circuits for determination and transdetermination. Science, N.Y. 181, 310.CrossRefGoogle Scholar
Kimata, K., Okayama, M., Oohira, A. & Suzuki, S. (1974). Heterogeneity of proteochondroitin sulfates produced by chondrocytes at different stages of cytodifferentiation. J. Biol. Chem. 249, 1646.CrossRefGoogle ScholarPubMed
Konigsberg, I. R. (1971). Diffusion-mediated control of myoblast fusion. Devl Biol. 26, 133.CrossRefGoogle ScholarPubMed
Kosher, R. A. & Lash, J. W. (1975) Perinotochordal proteoglycans and somite chondrogenesis. In Extracellular Matrix Influences on Gene Expression (ed. Slavkin, A. and Greulich, R.). New York: Academic Press.Google Scholar
Kosher, R. A., Lash, J. W. & Minor, R. R. (1973). Environmental enhancement of in vitro chondrogenesis. IV. Stimulation of somite chondrogenesis by exogenous chondromucoprotein. Devl Biol. 35, 210.CrossRefGoogle ScholarPubMed
Kulonen, E. & Pikkarainen, J. (1973). Biology of Fibroblast. New York: Academic Press.Google Scholar
Lash, J. W. (1968). Chondrogenesis: Genotypic and phenotypic expression. J. Cell Physiol. 72, suppl. I, 35.CrossRefGoogle ScholarPubMed
Lash, J. W. (1972). In Comparative Molecular Biology of Extracellular Matrices (ed. Slavkin, H.). New York: Academic Press.Google Scholar
Lash, J. W., Hommes, F. A. & Zilliken, F. (1962). The in vitro induction of vertebral cartilage with a low molecular weight tissue component. Biochim. biophys. Acta 56, 313.CrossRefGoogle ScholarPubMed
Lash, J. W., Rosen, K., Minor, R. R., Daniel, J. C. & Kosher, R. A. (1973). Environmental enhancement of in vitro chondrogenesis. III. The influence of external potassium and chondrogenic differentiation. Devl Biol. 35, 370.CrossRefGoogle Scholar
Lasher, R. & Cahn, R. (1969). The effects of 5-bromodeoxyuridine on the differentiation of chondrocytes in vitro. Devl Biol. 19, 415.CrossRefGoogle ScholarPubMed
Lathja, L. G. & Schofield, R. (1974). On the problem of differentiation in haemopoiesis. Differentiation 2, 313.Google Scholar
Lazarides, E. (1975). Tropomyosin antibody: The specific localization of tropomyosin in non-muscle cells. J. Cell Biol. 65, 549.CrossRefGoogle Scholar
Lazarides, E. & Weber, K. (1974). Actin antibody: The specific visualization of actin filaments in non-muscle cells. Proc. natn. Acad. Sci. U.S.A. 71, 2268.CrossRefGoogle ScholarPubMed
Levi-Monatalcici, R. (1974.). In Dynamics of Degeneration and Growth in Neurons (ed. Fuxe, K., Olson, L. & Zotterman, Y.). Oxford: Pergamon Press.Google Scholar
Levitt, D. & Dorfman, A. (1972). The irreversible inhibition of differentiation of limb-bud mesenchyme by bromodeoxyriudine. Proc. natn. Acad. Sci. U.S.A. 69, 1253.CrossRefGoogle Scholar
Levitt, D. & Dorfman, A. (1974). Concepts and mechanisms of cartilage differentiation. Curr. Top. Devl Biol. 8, 103.CrossRefGoogle ScholarPubMed
Levy, J., Terada, M., Rifikind, R. A. & Marks, P. A. (1975). Inductions of erythroid differentiation by diniethylsulfoxide in cells infected with Friend virus: Relationship to the cell cycle. Proc. natn. Acad. Sci. U.S.A. 72, 28.CrossRefGoogle ScholarPubMed
Lough, J. & Bischoff, R. (1973). Inhibition of myoblast fusion by BUdR during the first half of DNA synthesis. J. Cell Biol. 59, 220a.Google Scholar
Marks, P. A. & Rifkind, R. A. (1972). Protein synthesis: Its control in erythropoiesis. Science, N. Y. 175, 955.CrossRefGoogle ScholarPubMed
Marzullo, G. & Lash, J. (1967). Acquisition of the chondrogenic phenotype. In Experimental Biology and Medicine (ed. Hagen, E., Weschler, W. and Zilliken, J.), p. 213. Basel: Karger.Google Scholar
Mayne, R., Schiltz, J. & Holtzer, H. (1973). Some overt and covert properties of chondrogenic cells. In Biology of Fibroblast (ed. Kulonen, E. and Pikkarainen, J.). New York: Academic Press.Google Scholar
Mcclintock, P. R. & Papaconstantinou, J. (1974). Regulation of hemoglobin synthesis in a murine erythroblastic leukemic cell: The requirement for replication to induce hemoglobin synthesis. Proc. natn. Acad. Sci. U.S.A. 71, 4551.CrossRefGoogle Scholar
Medoff, J. (1967). Enzymatic events during cartilage differentiation in the chick embryonic limb bud. Devl Biol. 16, 118.CrossRefGoogle ScholarPubMed
Medoff, J. & Zwilling, E. (1972). Appearance of myosin in the chick limb bud. Devl Biol. 16, 118.CrossRefGoogle Scholar
Meier, S. & Hay, E. (1975). Control of corneal differentiation in vitro by extracellular matrix. In Extracellular Matrix Influences on Gene Expression (ed. Slavkin, H. and Greulich, R.), p. 185. New York: Academic Press.CrossRefGoogle Scholar
Minor, R. R. (1973). Somite chondrogenesis: A structural analysis. J. Cell Biol. 56, 27.CrossRefGoogle ScholarPubMed
Morris, G. E., Buzash, E. A., Rourke, A. W., Tepperman, K., Thompson, W. C. & Heywood, S. M. (1973). Myosin messenger RNA: Studies on its purification, properties and translation during myogenesis in cultures. Cold Spring Harb. Symp. Quant. Biol. 37, 535.CrossRefGoogle Scholar
Nameroff, M. A. (1974) Phospholipase C and the myogenic cell surface. In Exploratory Concepts in Muscular Dystrophy, vol. II (ed. Milhorat, A. T.), p. 26. Amsterdam: Excerpta Medica.Google Scholar
Nameroff, M. A., Reznik, M., Anderson, P. & Hansen, J. L. (1970). Differentiation and control of mitosis in a skeletal muscle tumor. Cancer Res. 30, 596.Google Scholar
Nevo, Z. & Dorfman, A. (1972). Stimulation of chondromucoprotein synthesis in chondrocytes by extracellular chondromucoprotein. Proc. natn. Acad. Sci. U.S.A. 69, 2069.CrossRefGoogle ScholarPubMed
O'Connor, R. J. (1952). Growth and differentiation in the red blood cells of the chick embryo. J. Anat. 86, 320.Google Scholar
Okayama, M. & Holtzer, H. (1975). (In preparation.)Google Scholar
Okazaki, K. & Holtzer, H. (1965). An analysis of myogenesis in vitro using fluorescein-labelled antimyosin. J. Histochem. Cytochem. 13, 726.CrossRefGoogle Scholar
Okazaki, K. & Holtzer, H. (1966). Myogenesis: Fusion, myosin synthesis, and the mitotic cycle. Proc. natn. Acad. Sci. U.S.A. 56, 1484.CrossRefGoogle ScholarPubMed
O'Malley, B. W., Woo, S. L. C., Harris, S. E., Rosen, J. M. & Means, A. R. (1975). Steroid hormone regulation of specific messenger RNA and protein synthesis in eucaryotic cells. J. Cell Physiol. 85, 343.CrossRefGoogle Scholar
O'neill, M. C. & Stockdale, F. E. (1972). Differentiation without cell division in cultured skeletal muscle. Devl Biol. 29, 410.CrossRefGoogle ScholarPubMed
O'neill, M. C. & Strohman, R. (1970). Studies of the decline in DNA polymerase activity during embryonic muscle cell fusion in vitro. Biochemistry, N. Y. 9, 2832.CrossRefGoogle ScholarPubMed
Orkin, R. W., Pollard, T. D. & Hay, E. D. (1973). SDS gel analysis of muscle proteins in embryonic cells. Devl Biol. 35, 388.CrossRefGoogle ScholarPubMed
Ostertag, W., Crozier, T., Kluge, N., Melderis, H. & Dube, S. (1973). Action of 5-bromodeoxyuridine on the induction of he moglobin synthesis in mouse leukemic cells resistant to 5-BudR. Nature New Biol. 243, 203.CrossRefGoogle Scholar
Palmoske, M. J. & Goetinck, P. F. (1972). Synthesis of proteochondroitinsulfate by normal, manomelic and 5-bromodeoxyuridine-treated chondrocytes in cell culture. Proc. natn. Acad. Sci. U.S.A. 69, 3385.CrossRefGoogle Scholar
Paterson, B. M. & Strohman, R. C. (1972). Myosin synthesis in cultures of differentiating chicken embryo skeletal muscles. Devl Biol. 29, 113.CrossRefGoogle Scholar
Pitts, J., (1972). Direct interactions between animal cells. In Cell Interactions (ed. Silvestri, L.), 3rd Lepetite Colloq. Amsterdam: North-Holland.Google Scholar
Pollard, T. & Weihing, R. (1974). Actin and myosin cell movement. CRC Crit. Rev. Biochem. 2, 1.CrossRefGoogle ScholarPubMed
Przybyla, A. & Strohman, R. C. (1974). Myosin heavy chain messenger RNA from myogenic cell cultures. Proc. natn. Acad. Sci. U.S.A. 71, 662.CrossRefGoogle ScholarPubMed
Ronzio, R. A. & Rutter, W. J. (1973). Effects of a partially purified factor from chick embryos on macromolecular synthesis of embryonic pancreatic epithelia. Devl Biol. 30, 307.CrossRefGoogle ScholarPubMed
Rubinstein, N. A., Chi, J. C. H. & Holtzer, H. (1974). Actin and myosin in a variety of myogenic and non-myogenic cells. Biochem. biophy. Res. Commun. 57, 438.CrossRefGoogle Scholar
Rubinstein, N. A., Chi, J. C. H. & Holtzer, H. (1975). Coordinated thesis and degradation of actin and myosin in a variety of myogenic and non-myogenic cells. Expl Cell Res. (In the Press.)Google Scholar
Rutter, W., Pictet, R. & Monis, P. (1973). Toward molecular mechanisms of developmental processes. A. Rev. Biochem. 42, 601.CrossRefGoogle ScholarPubMed
Sabin, F. R. (1920). Studies on the origin of blood-vessels and of red blood- corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Contr. Embryol. 9, 215.Google Scholar
Sabin, F. R. (1928). Bone marrow. Physiol. Rev. 8, 191.CrossRefGoogle Scholar
Sanger, J. & Holtzer, H. (1972). Cytochalasin B: effects on cell morphology, cell adhesion and mucopolysaccharide synthesis. Proc. natn. Acad. Sci. U.S.A. 69, 253.CrossRefGoogle ScholarPubMed
Scher, W., Priesler, H. D. & Friend, C. (1973). Hemoglobin synthesis in murine virus induced leukemic cells in vitro. III. Effects of 5-bromo-2- deoxyuridine dimethylforamide and dimethylsulfoxide. J. Cell Physiol. 81, 63.CrossRefGoogle Scholar
Schiltz, J. R., Mayne, R. & Holtzer, H. (1973). The synthesis of collagen and glycosaminoglycans by dedifferentiated chondroblasts in culture. Differentiation I, 97.CrossRefGoogle Scholar
Schulte-Holthausen, H., Chacko, S., Davidson, E. & Holtzer, H. (1969). Effect of 5-bromodeoxyuridine on expression of cultured chondrocytes grown in vitro. Proc. natn. Acad. Sci. U.S.A. 63, 864.CrossRefGoogle Scholar
Slavkin, H. & Greulich, R. (1975). Extracellular Matrix Influences on Gene Expression. New York: Academic Press.Google Scholar
Slavkin, H. C., Matosian, P., Wilson, P., Bringas, P.Mino, W., Croissant, R. & Guenther, H. (1975) Epithelial-specific extracellular matrix influences on mesenchyme collagen biosynthesis in vitro. In Extracellular Matrix Influences on Gene Expression (ed. Slavkin, H. and Greulich, R.). New York: Academic Press.Google Scholar
Solursh, M. (1975). The enhancement of chondrogenesis of predetermined limb bud cells by cartilage-conditioned medium. In Extracellular Matrix Influences on Gene Expression (ed. Slavkin, H. and Greulich, R.). New York: Academic Press.Google Scholar
Solursh, M. & Meier, S. (1973). A conditioned medium (cm) factor produced by chondrocytes that promote their own differentiation. Devl Biol.. 30, 279.CrossRefGoogle ScholarPubMed
Solrush, M. & Meier, S. (1974). Effects of cell density on the expression of differentiation by chick embryo chondrocytes. J. exp. Zool. 187, 311.CrossRefGoogle Scholar
Spemann, H. (1938). Embryonic Development and Induction. Yale University Press.CrossRefGoogle Scholar
Stockdale, F. E. & Holtzer, H. (1961). DNA synthesis and myogenesis. Expl Cell Res. 24, 508.CrossRefGoogle ScholarPubMed
Stockdale, F. E., Okazaki, K., Nameroof, M. & Holtzer, H. (1964). 5-bromodeoxyuridine: effect on myogenesis in vitro. Science, N. Y. 146, 533.CrossRefGoogle ScholarPubMed
Stockdale, F. E. & O'Neil, M. C. (1972). Deoxyribonucleic acid synthesis, mitosis, and skeletal muscle differentiation. In Vitro 8, 212.CrossRefGoogle ScholarPubMed
Tarkias, H. & Schubert, D. (1974). Regulation of adenylate kinase and creatine kinase in myogenic cells. Proc. natn. Acad. Sci. U.S.A. 71, 2377.CrossRefGoogle Scholar
Weber, K. & Groeschel-Stewart, U. (1974). Antibody to myosin: The specific visualization of myosin containing filaments in non-muscle cells. Proc. natn. Acad. Sci. U.S.A. 71, 4561.CrossRefGoogle Scholar
Weintraub, H. (1975). The organisation of red cell differentiation. In Cell Cycle and Cell Differentiation (eds. Reinert, J. and Holtzer, H.). Berlin: Springer-Verlag.Google Scholar
Weintraub, H., Campbell, G. & Holtzer, H. (1971). Primitive erythropoiesis in early chick embryogenesis. I. J. Cell Biol. 50, 65.CrossRefGoogle ScholarPubMed
Weintraub, H., Campbell, G. & Holtzer, H. (1972). Identification of a developmental program using BudR. J. molec. Biol. 70, 337.CrossRefGoogle Scholar
Willingham, M. C., Ostlund, R. E. & Pastan, I. (1974). Myosin is a component of the cell surface of cultured cells. Proc. natn. Acad. Sci. U.S.A. 71, 4144.CrossRefGoogle ScholarPubMed
Wilt, F. H. (1967). The control of embryonic hemoglobin synthesis. In Advances in Morphogenesis, v. 6, 89. New York: Academic Press.Google Scholar
Yaffe, D. (1968). Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. natn. Acad. Sci. U.S.A. 61, 477.CrossRefGoogle ScholarPubMed
Yaffe, D. & Dym, H. (1973). Gene expression during differentiation of contractile muscle fibers. Cold Spring Harb. Symp. quant. Biol. 37, 543.CrossRefGoogle Scholar
Yamada, T. (1962). The inductive phenomenon as a tool for understanding the basic mechanisms of differentiation. J. Cell. Camp. Physiol. 60, 49.CrossRefGoogle Scholar
Yeoh, G. & Holtzer, H. (1975 a). The effect of cell density, conditioned medium and cytosine arabinoside on myogenesis. (Submitted.)Google Scholar
Yeoh, G. & Holtzer, H. (1975 b). Myogenesis in secondary cultures. (Submitted).Google Scholar
Zwilling, E. (1968). Morphogeneticphases in development. Devl Biol. suppl. 2, 184.Google Scholar