Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-26T11:28:22.442Z Has data issue: false hasContentIssue false

High-Voltage Electron Microscopy

Published online by Cambridge University Press:  17 March 2009

V. E. Cosslett
Affiliation:
Cavendish Laboratory, University of Cambridge, England

Summary

The main advantage of high voltage in electron microscopy is greater penetration. When using an aperture of optimum size the thickness of specimen that can be imaged increases almost linearly with applied voltage in the case of light elements, both when the criterion is image intensity and when it is resolution. For heavy elements the increase is less rapid. With a small aperture the increase in observable thickness is still less rapid, and ‘saturates’ towards I MV. For a specimen of given thickness, image definition increases nearly linearly with voltage owing to the decrease in chromatic aberration. Although ultimate resolving power improves with voltage, the gain is slight and is offset by a fall in contrast. The optimum voltage for very high resolution is probably between 200 and 300 kV. Radiation damage arising from ionization decreases with rising voltage, making easier the examination of sensitive materials such as polymers. On the other hand, ejection of atoms by head-on collision increases rapidly above a threshold voltage, causing observable defects in metals.

In construction, a high-voltage microscope differs from the normal type only in size and in having an accelerator instead of a simple electron gun. In operation it differs little, apart from precautions to avoid fiashover in the accelerator. A decrease in response of viewing screens and photographic emulsions is more than compensated by higher brightness of the electron gun. The chief applications so far of the high-voltage microscope have been for studying thick films of metals, magnetic materials, ceramics and polymers. Improved preparation techniques should make it possible to study sections of biological tissues up to 5 μ thick. The observation of micro-organisms and other specimens in the wet state can be carried out in double-walled cells, but only at poor resolution. Still higher voltages, up to 3 or MV coupled with the use of an energy analyser or an image intensifier, should improve further the microscopy of such thick specimens.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

von Ardenne, M. (1941). Electron microscopy of living matter. Naturwissenschaften 29, 521–2.CrossRefGoogle Scholar
Burge, R. E. & Smith, G. H. (1962). Electron microscopy at high beam accelerating voltages. Nature, Lond. 195, 140–1.CrossRefGoogle Scholar
Cosslett, V. E. (1947). Conditions for extending the resolution limit of the electron microscope. J. scient. Instrum. 24, 4043.CrossRefGoogle Scholar
Cosslett, V. E. (1956). Specimen thickness and image resolution in electron microscopy. Br. J. appl. Phys. 7, 1013.CrossRefGoogle Scholar
Cosslett, V. E. (1967). Electron penetration in high voltage microscopy. Optik 25, 383–8.Google Scholar
Cosslett, V. E. (1969). Energy loss and chromatic aberration in electron microscopy. Z. angew. Physik (in the Press).Google Scholar
Curtis, G. H. (1968). Studies in small-angle electron scattering. Ph.D. thesis, University of Cambridge.Google Scholar
Van Dorsten, A. C., Oosterkamp, W. J. & Le Poole, J. B. (1947). An experimental electron microscope for 400 kilovolts. Philips tech. Rev. 9, 195201.Google Scholar
Dupouy, G. (1968). Electron microscopy at very high voltages. Adv. Optical Electron Mic. 2, 167250.Google Scholar
Dupouy, G., Perrier, F. & Durrieu, L. (1960). Observation of living matter by means of a high voltage electron microscope. C. r. hebd. Séanc. Acad. Sci., Paris 251, 2836–41.Google Scholar
Escaig, J. (1966). Specimen holder permitting observation in the electron microscope of specimens in a controlled atmosphere. C. r. hebd. Séanc. Acad. Sci., Paris 262, 538–41.Google Scholar
Ferrier, R. P. & Puchalska, I. B. (1968). 360 walls and strong stripe domains in permalloy films. Phys. stat. solid. 28, 335–47.CrossRefGoogle Scholar
Fujita, H. (1966). Continuous observation of recrystallisation and successive coarsening in aluminium with a 500 kV electron microscope. Jap. J. Appl. Phys. 5, 729.CrossRefGoogle Scholar
Fujita, H., Kawasaki, Y., Furubayashi, E., Kajiwara, S. & Taoka, T. (1967). Metallurgical investigations with a 500 kV electron microscope. Jap. J. Appl. Phys. 6, 214–30.CrossRefGoogle Scholar
Hale, K. F. & Henderson-Brown, M. (1968). High voltage electron microscopy applied to the study of cement. Proc. IVth European Regional Electron Microsc. Conf. vol. I, pp. 45–6. Rome: Tipografia Poliglotta Vaticana.Google Scholar
Hale, K. F. & Henderson-Brown, M. (1969). To be published in Metals Sci. J.Google Scholar
Hashimoto, H. (1964). Energy dependence of extinction distance and transmissive power for electron waves in crystals. J. Appl. Phys. 35, 277–90, 2788.CrossRefGoogle Scholar
Hashimoto, H., Kumao, A. & Hosoi, K. (1968). Energy dependence of contamination rate in electron microscopes at 100–500 kV. Proc. IVth European Regional Electron Microsc. Conf. vol. I, pp. 3940. Rome:Tipografia Poliglotta Vaticana.Google Scholar
Heidenreich, R. D. (1967). Electron phase contrast images of molecular detail. J. Electron Microsc. (Tokyo), 16, 2338.Google Scholar
Hirsch, P. B. & Humphreys, C. J. (1968). Chromatic aberration and absorption in high voltage electron microscopy. Proc. IVth European Regional Electron Microse. Conf. vol. 1, pp. 4953. Rome: Tipografia Poliglotta Vaticana.Google Scholar
Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. & Whelan, M. J. (1965). Electron Microscopy of Thin Crystals. London: Butterworths.Google Scholar
Ichimiya, A. (1968). An experimental study on the anomalous transmission of electrons through crystals. Measurements with molybdenite films at 200 and 500 kV. Jap. J. Appl. Phys. 7, 1425–33.CrossRefGoogle Scholar
Kamiya, Y. (1966). Contrast effects of inelastic scattering images at high accelerating voltages. Proc. VIth Int. Electron Microsc. Conf., Kyoto, vol. 1, pp. 95–6. Tokyo: Maruzen. (See also Uyeda, 1968.)Google Scholar
Kobayashi, K. & Ohara, M. (1966). Voltage dependence of radiation damage to polymer specimens. Proc. VIth Int. Electron Microsc. Conf., Kyoto, vol 1, pp. 579–80. Tokyo: Maruzen.Google Scholar
Kobayashi, K. & Sakaoku, K. (1965). Irradiation changes in organic polymers at various accelerating voltages. In Quantitative Electron Microscopy, pp. 359–76. Ed. Bahr, G. F. and Zeitler, E. H.. Baltimore: Williams and Wilkins.Google Scholar
Landau, L. (1944). On the energy loss of fast particles by ionisation. J. Phys. (U.S.S.R.) 8, 201–5.Google Scholar
Lenz, F. (1954). On the scattering of medium-voltage electrons at very small angles. Z. Naturforsch 9 a, 185204.CrossRefGoogle Scholar
Lippert, W. (1968). Personal communication.Google Scholar
Lippert, W. & Friese, W. (1962). On the representation of contrast with the aid of Lenz's theory. Proc. Vth Int. Electron Microsc. Conf., vol. 1, AA—i. Philadelphia. New York: Academic Press.Google Scholar
Little, K. (1968). Personal communication.Google Scholar
Makin, M. J. (1968). Electron displacement damage in copper and aluminium in a high voltage electron microscope. Phil. Mag. 18, 637–53.CrossRefGoogle Scholar
Makin, M. J. & Sharp, J. V. (1968). An introduction to high voltage electron microscopy. J. Materials Sci. 3, 360–71.CrossRefGoogle Scholar
Oatley, C. W., Nixon, W. C. & Pease, R. F. W. (1965). Scanning electron microscopy. Adv. Electronics Electron Phys. 21, 181247.CrossRefGoogle Scholar
Pedler, C. M. H. (1968). Personal communication.Google Scholar
Porter, K. R. (1968). Demonstration at the American Society of Cell Biology meeting, Boston, November 1968.Google Scholar
Reimer, L. (1967). Elektronenmikroskopische Untersuchungs-und Präparationsmethoden. Berlin: Springer.CrossRefGoogle Scholar
Reimer, L. & Sommer, K. H. (1968). Measurements and calculations of the scattering contrast in electron microscopy for 17–1200 keV electrons. Z. Naturforsch. 23 a, 1569–82.CrossRefGoogle Scholar
Ruska, E. (1965). Current efforts to attain the resolution limit of the transmission electron microscope. J. R. Microsc. Soc. 84, 77104.CrossRefGoogle Scholar
Sharp, J. V. & Makin, M. J. (1968). Radiation enhanced diffusion in specimens examined at high voltages. Proc. IVth European Regional Electron Microsc. Conf., vol. I, pp. 37–8. Rome: Tipografia Poliglotta Vaticana.Google Scholar
Smith, K. C. A. & Considine, K. (1968). Scanning transmission microscopy at high voltages. Proc. IVth European Regional Electron Microsc. Conf., vol. I, pp. 73–4. Rome: Tipografia Poliglotta Vaticana.Google Scholar
Smith, K. C. A., Considine, K. & Cosslett, V. E. (1966). A new 750 kV electron microscope. Proc. VIth Int. Electron Microsc. Conf., Kyoto vol. I, pp. 99100. Tokyo: Maruzen.Google Scholar
Stoyanova, I. G. & Nekrasova, T. A. (1961). Study of live microorganisms in electron microscope by gas microchamber method. Soy. Physics Dokl. 5, 1117–21. (English ed.)Google Scholar
Thomas, G. (1968). Electron microscopy at high voltages. Phil. Mag. 17, 10971108.CrossRefGoogle Scholar
Uyeda, R. (1968). Observation of thick specimens by high voltage electron microscopy. Proc. IVth European Regional Electron Microsc. Conf. vol. I, pp. 55–8. Rome: Tipografia Poliglotta Vaticana.Google Scholar
Uyeda, R. & Nonoyama, M. (1967). The observation of thick specimens by high voltage electron microscdpy. Experiment with molybdenite films at 50–500 kV. Jap. J. Appl. Phys. 6, 557–66.CrossRefGoogle Scholar
Uyeda, R. & Nonoyama, M. (1968). The observation of thick specimens by high voltage electron microscopy. II. Experiment with molybdenite films at 50–1200 kV. Jap. J. appl. Phys. 7, 200–8.CrossRefGoogle Scholar