Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-15T18:59:43.044Z Has data issue: false hasContentIssue false

Heteronuclear filters in two-dimensional [1H, 1H]-NMR spectroscopy: combined use with isotope labelling for studies of macromolecular conformation and intermolecular interactions

Published online by Cambridge University Press:  17 March 2009

Gottfried Otting
Affiliation:
Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, CH-8093 Zürich, Switzerland
Kurt Wüthrich
Affiliation:
Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, CH-8093 Zürich, Switzerland

Extract

The use of heteronuclear filters enables the editing of complex 1H nuclear magnetic resonance (NMR) spectra into simplified subspectra containing a lesser number of resonance lines, which are then more easily amenable to detailed spectral analysis. This editing is based on the creation of heteronuclear two-spin or multiple-spin coherence and discrimination between protons that do or do not participate in these heteronuclear coherences. In principle, heteronuclear editing can be used in conjunction with one-dimensional or multidimensional 1H-NMR experiments for studies of a wide variety of low-molecular-weight compounds or macromolecular systems, and is implicitely applied in a wide range of heteronuclear NMR experiments with proton detection (e.g. Bax et al. 1983; Griffey & Redfield, 1987). In the present article we shall focus on the use of heteronuclear filters in two-dimensional (2D) [1H, 1H]-NMR experiments. The selection of the material covered was primarily motivated by its impact on the practice of protein structure determination in solution, and on NMR studies of intermolecular interactions with biological macromolecules. Section 2 surveys potential applications of heteronuclear filters in this area. The remainder of the article is devoted to an introduction of the theoretical principles used in heteronuclear filters, and to a detailed description of the experimental implementation of these measurements. In writing the review we tried to minimize redundancy with the recent article in Quarterly Review of Biophysics by Griffey & Redfield (1987) and to concentrate on experiments that were introduced during the period 1986–9.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arseniev, A., Schultze, P., Wörgötter, E., Braun, W., Wagner, G., Vašák, M., Kägi, J. H. R. & Wüthrich, K. (1988). Three-dimensional structure of rabbit liver [Cd7]-metallothionein-2a in aqueous solution determined by nuclear magnetic resonance. J. molec. Biol. 201, 637657.CrossRefGoogle ScholarPubMed
Aue, W. P., Bartholdi, E. & Ernst, R. R. (1976). Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 64, 22292246.CrossRefGoogle Scholar
Bax, A. & Davis, D. G. (1985). MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. magn. Reson. 65, 355360.Google Scholar
Bax, A. & Weiss, M. A. (1987). Simplification of two-dimensional NOE spectra of proteins by 13C labeling. J. magn. Reson. 71, 571575.Google Scholar
Bax, A., Griffey, R. H. & Hawkins, B. L. (1983). Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J. magn. Reson. 55, 301315.Google Scholar
Bodenhausen, G., Freeman, R. & Turner, D. L. (1977). Suppression of artifacts in two dimensional J spectroscopy. J. magn. Reson. 27, 511514.Google Scholar
Bodenhausen, G., Kogler, H. & Ernst, R. R. (1984). Selection of coherence-transfer pathways. J. magn. Reson. 58, 370388.Google Scholar
Bolton, P. H. (1985). Heteronuclear relay transfer spectroscopy with proton detection. J. magn. Reson. 62, 143146.Google Scholar
Bystrov, V. F. (1976). Spin-spin coupling and the conformational states of peptide systems. Prog. NMR Spectrosc. 10, 4181.CrossRefGoogle Scholar
Cavanagh, J. & Keeler, J. (1988). Improvement of carbon-13 satellite spectra by double difference spectroscopy. J. magn. Reson. 77, 356362.Google Scholar
Emshwiller, M., Hahn, E. L. & Kaplan, D. (1960). Pulsed nuclear resonance spectroscopy. Phys. Rev. 118, 414424.CrossRefGoogle Scholar
Ernst, R. R., Bodenhausen, G. & Wokaun, A. (1987). Principles of Nuclear Magnetic Resonance in One and Two dimensions. Clarendon Press, Oxford.Google Scholar
Fesik, S. W. (1988). Isotope-edited NMR spectroscopy. Nature 332, 865866.CrossRefGoogle Scholar
Fesik, S. W. & Zuiderweg, E. R. P. (1990). Heteronuclear three-dimensional NMR spectroscopy of isotopically labelled biological macromolecules. Quart. Rev. Biophys. (in press).CrossRefGoogle Scholar
Fesik, S. W., JrGampe, R. T. & Rockway, T. W. (1987). Application of isotope-filtered 2D NOE experiments in the conformational analysis of atrial natriuretic factor(7–23). J. magn. Reson. 74, 366371.Google Scholar
Fesik, S. W., Luly, J. R., Erickson, J. W. & Abad-Zapatero, C. (1988). Isotope-edited proton NMR study on the structure of a pepsin/inhibitor complex. Biochemistry 27, 82978301.CrossRefGoogle Scholar
Fesik, S. W., JrGampe, R. T., Zuiderweg, E. R. P., Kohlbrenner, W. E. & Weigl, D. (1989). Heteronuclear three-dimensional NMR spectroscopy applied to CMP-KDO-synthetase (27·5 kDa). Biochem. Biophys. Res. Commun. 159, 842847.CrossRefGoogle Scholar
Freeman, R., Mareci, T. H. & Morris, G. A. (1981). Weak satellite signals in high-resolution NMR spectra: separating the wheat from the chaff. J. magn. Reson. 42, 341345.Google Scholar
Frey, M. H., Wagner, G., Vašák, M., Sørensen, O. W., Neuhaus, D., Wörgötter, E., Kägi, J. H. R., Ernst, R. R. & Wüthrich, K. (1985). Polypeptide-metal cluster connectivities in metallothionein-2 by novel 1H-113Cd heteronuclear two-dimensional NMR experiments. J. Am. Chem. Soc. 107, 68476851.CrossRefGoogle Scholar
Griesinger, C., Sørensen, O. W. & Ernst, R. R. (1986). Correlation of connected transitions by two-dimensional NMR spectroscopy. J. Chem. Phys. 85, 68376852.CrossRefGoogle Scholar
Griesinger, C., Otting, G., Wüthrich, K. & Ernst, R. R. (1988). Clean TOCSY for 1H spin system identification in macromolecules. J. Am. Chem. Soc. 110, 78707872.CrossRefGoogle Scholar
Griffey, R. H. & Redfield, A. G. (1987). Proton-detected heteronuclear edited and correlated nuclear magnetic resonance and nuclear Overhauser effect in solution. Quart. Rev. Biophys. 19, 5182.CrossRefGoogle ScholarPubMed
Hill, R. K., Sawada, S. & Arfin, S. M. (1979). Stereochemistry of valine and isoleucine biosynthesis. IV. Synthesis, configuration and enzymatic specificity of α-acetolactate and α-aceto-α-hydroxy-butyrate. Bioorg. Chem. 8, 175189.CrossRefGoogle Scholar
Hoult, D. I. & Richards, R. E. (1975). Critical factors in the design of sensitive high resolution nuclear magnetic resonance spectrometers. Proc. R. Soc. Land. A344, 311340.Google Scholar
Karplus, M. (1959). Contact electron-spin coupling of nuclear magnetic moments. J. Chem. Phys. 30, 1115.CrossRefGoogle Scholar
Macura, S., Huang, Y., Suter, D. & Ernst, R. R. (1981). Two-dimensional chemical exchange and cross-relaxation spectroscopy of coupled nuclear spins. J. magn. Reson. 43, 259281.Google Scholar
Marion, D., Kay, L. E., Sparks, S. W., Torchia, D. A. & Bax, A. (1989). Three-dimensional heteronuclear NMR of 15N-labelled proteins. J. Am. Chem. Soc. 111, 15151517.CrossRefGoogle Scholar
McIntosh, L. P., Dahlquist, F. W. & Redfield, A. G. (1987). Proton NMR and NOE structural and dynamic studies of larger proteins and nucleic acids aided by isotope labels: T4 lysozyme. J. Biomol. Struct. Dynamics 5, 2134.CrossRefGoogle ScholarPubMed
Messerle, B. A., Wider, G., Otting, G., Weber, C. & Wüthrich, K. (1989). Solvent suppression using a spin lock in 2D and 3D NMR spectroscopy with H2O solution. J. magn. Reson. 85, 608613.Google Scholar
Montelione, G. T., Winkler, M. E., Rauenbuehler, P. & Wagner, G. (1989). Accurate measurements of long-range heteronuclear coupling constants from homonuclear 2D NMR spectra of isotope-enriched proteins. J. magn. Reson. 82, 198204.Google Scholar
Neri, D., Szyperski, T., Otting, G., Senn, H. & Wüthrich, K. (1989). Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 represser by biosynthetic fractional 13C labelling. Biochemistry 28, 75107516.CrossRefGoogle Scholar
Neuhaus, D., Wagner, G., Vašák, M., Kägi, J. H. R. & Wüthrich, K. (1984). 113Cd-1H spin-spin couplings in homonuclear 1H correlated spectroscopy of metallothionein. Identification of the cysteine 1H spin systems. Eur.J. Biochem. 143, 659667.CrossRefGoogle ScholarPubMed
Otting, G. & Wüthrich, K. (1988). Efficient purging scheme for proton-detected heteronuclear two-dimensional NMR. J. magn. Reson. 76, 569574.Google Scholar
Otting, G. & Wüthrich, K. (1989). Extended heteronuclear editing of 2D 1H NMR spectra of isotope-labelled proteins: the X(ω1, ω2)-double-half-filter. J. magn. Reson. 85, 586594.Google Scholar
Otting, G., Senn, H., Wagner, G. & Wüthrich, K. (1986). Editing of 2D 1H NMR spectra using X-half-filters. Combined use with residue-selective 15N-labelling of proteins. J. magn. Reson. 70, 500505.Google Scholar
Piantini, U., Sørensen, O. W. & Ernst, R. R. (1982). Multiple-quantum filters for elucidating NMR coupling networks. J. Am. Chem. Soc. 104, 68006801.CrossRefGoogle Scholar
Schultze, P., Wörcötter, E., Braun, W., Wagner, G., Vašák, M., Kägi, J. H. R. & Wüthrich, K. (1988). Conformation of [Cd7]-metallothionein-2 from rat liver in aqueous solution determined by nuclear magnetic resonance spectroscopy. J. molec. Biol. 203, 251268.CrossRefGoogle ScholarPubMed
Senn, H., Eugster, A., Otting, G., Suter, F. & Wüthrich, K. (1987 a). 15N-labeled P22 C2 represser for nuclear magnetic resonance studies of protein-DNA interactions. Eur. Biophys.J. 14, 301306.CrossRefGoogle Scholar
Senn, H., Otting, G. & Wüthrich, K. (1987 b). Protein structure and interactions by combined use of sequential NMR assignments and isotope labeling. J. Am. Chem. Soc. 109, 10901092.CrossRefGoogle Scholar
Senn, H., Werner, B., Messerle, B. A., Weber, C., Traber, R. & Wüthrich, K. (1989). Stereospecific assignment of the methyl 1H-NMR lines of valine and leucine in polypeptides by nonrandom 13C labelling. FEES Lett. 249, 113118.CrossRefGoogle Scholar
Sørensen, O. W., Eich, G. W., Levitt, M. H., Bodenhausen, G. & Ernst, R. R. (1983). Product operator formalism for the description of NMR pulse experiments. Prog. NMR Spectrosc. 16, 163192.CrossRefGoogle Scholar
South, T. L., Kim, B. & Summers, M. F. (1989). 113Cd NMR studies of a 1:1 Cd adduct with an 18-residue finger peptide from HIV-1 nucleic acid binding protein, p7. J. Am. Chem. Soc. 111, 395396.CrossRefGoogle Scholar
Torchia, D. A., Sparks, S. W. & Bax, A. (1989). Staphylococcal nuclease: sequential assignments and solution structure. Biochemistry 28, 55095524.CrossRefGoogle ScholarPubMed
Wilde, J. A., Bolton, P. H., Stolowich, N. J. & Gerlt, J. A. (1986). A method for the observation of selected proton NMR resonances of proteins. J. magn. Reson. 68, 168171.Google Scholar
Wörgötter, E., Wagner, G. & Wüthrich, K. (1986). Simplification of two-dimensional 1H NMR spectra using an X-filter. J. Am. Chem. Soc. 108, 61626167.CrossRefGoogle Scholar
Wörgötter, E., Wagner, G., Vašák, M., Kägi, J. H. R. & Wüthrich, K. (1988). Heteronuclear filters for two-dimensional 1H-NMR. Identification of the metal-bound amino acids in metallothionein and observation of small heteronuclear long-range couplings. J. Am. Chem. Soc. 110, 23882393.CrossRefGoogle Scholar
Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids. Wiley, New York.CrossRefGoogle Scholar
Wüthrich, K. (1989). Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243, 4550.CrossRefGoogle ScholarPubMed
Wüthrich, K., Wider, G., Wagner, G. & Braun, W. (1982). Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance. J. molec. Biol. 155, 311319.CrossRefGoogle ScholarPubMed
Wüthrich, K., Billeter, M. & Braun, W. (1984). Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. J. molec. Biol. 180, 715740.CrossRefGoogle ScholarPubMed