Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T04:00:41.316Z Has data issue: false hasContentIssue false

Heavy metal toxicities

Published online by Cambridge University Press:  17 March 2009

Ian Bremner
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeens AB2 9SB

Extract

Several reviews have been published recently on the toxicity of heavy metals, but few of these have made any reference to the influence of the nutritional state of animals upon their tolerance of heavy metals. Furthermore, the clinical and metabolic changes occurring as a consequence of increased dietary intake of heavy metals are extremely dependent on factors such as the mineral composition of the diet and nature of the protein source. These aspects will be given particular attention in this review.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvares, A. P., Leigh, S., Cohn, J. & Kappas, A. (1972). Lead and methylmercury. Effects of acute exposure on cytochrome P-450 and the mixed function oxidase system in the liver. J. exp. Med. 135, 1406–9.CrossRefGoogle Scholar
Anke, M., Hennig, A., Schneider, H-J., Lüdke, H., von Gagern, W. & Schlegel, H. (1970). The interrelationships between cadmium, zinc, copper and iron in metabolism of hens, ruminants and man. In Trace Element Metabolism in Animals (ed. Mills, C. F.), pp. 317–20. Edinburgh: E. & S. Livingstone.Google Scholar
Axelsson, B. & Piscator, M. (1966). Renal damage after prolonged exposure to cadmium. An experimental study. Archs envir. Hlth 12, 360–73.CrossRefGoogle ScholarPubMed
Banis, R. J., Pond, W. G., Walker, E. F. & O'Connor, J. R. (1969). Dietary cadmium, iron and zinc interactions in the growing rat. Proc. Soc. exp. Bid. Med. 130, 802–6.CrossRefGoogle ScholarPubMed
Barltrop, D., Barrett, A. J. & Dingle, J. T. (1971). Subcellular distribution of lead in the rat. J. Lab. clin. Med. 77, 705–12.Google ScholarPubMed
Berglund, F. & Berlin, M. (1969). Risk of methylmercury cumulation in men and mammals and the relation between body burden of methyl- mercury and toxic effects. In Chemical Fallout (ed. Miller, M. W. and Berg, G. C.,) pp. 258–73. Springfield, Ill.: Thomas.Google Scholar
Berlin, M., Jerksell, G. & Nordberg, G. (1966). Accelerated uptake of mercury by brain caused by 2,3-dimercaptopropanol (BAL) after injection into the mouse of a methylmercury compound. Acta pharmac. tox. 23, 312–20.CrossRefGoogle Scholar
Berlin, M. & Ullberg, S. (1963). Accumulation and retention of mercury in the mouse. Archs envir. Hith 6, 589616.CrossRefGoogle ScholarPubMed
Binot, H., Lomba, F., Chauvaux, G. & Bienfet, V. (1972). The aetiology of conditioned copper deficiency. Influence of Fe, Zn and Pb supply on copper status of grazing cattle. Z. Tierphysiol. Tierernähr. Futtermitteik. 30, 4854.CrossRefGoogle ScholarPubMed
Bloomer, L. & Sourkes, T. L. (1973). The effect of copper loading on the distribution of copper in rat liver cytosol. Biochem. Med. 8, 7891.CrossRefGoogle ScholarPubMed
Borsook, H., Fischer, E. H. & Keighley, G. (1957). Factors affecting protein synthesis in vitro in rabbit reticulocytes. J. biol. Chem. 229, 1059–70.CrossRefGoogle ScholarPubMed
Bremner, I. (1974). Copper and zinc proteins in ruminant liver. Proc. 2nd Int. Symp. Trace Element Metabolism in Animals (Madison, Wisconsin) (in the Press).Google Scholar
Bremner, I. & Davies, N. T. (1974). Studies on the appearance of a copper- binding protein in rat liver. Biochem. Soc. Trans. 2 (in the Press).Google Scholar
Bremner, I., Davies, N. T. & Mills, C. F. (1973). The effect of zinc deficiency and food restriction on hepatic zinc proteins in the rat. Biochem. Soc. Trans. I, 982–5.CrossRefGoogle Scholar
Brubaker, P. E., Klein, R., Herman, S. P., Lucier, G. W., Alexander, L. J. & Long, M. D. (1973). DNA, RNA and protein synthesis in brain, liver and kidneys of asymptomatic methylmercury-treated rats. Exp. mol. Pathol. 18, 263–80.CrossRefGoogle ScholarPubMed
Bryce-Smith, D. (1973). Behavioural effects of lead and other heavy metal pollutants. Chem. Brit. 8, 240–3.Google Scholar
Bull, L. B., Albiston, H. E., Edgar, G. & Dick, A. T. (1956). Toxaemic jaundice of sheep: phytogenous chronic copper poisoning, heliotrope poisoning, and hepatogenous chronic copper poisoning. Aust. vet. J. 32, 229–36.Google Scholar
Bunn, C. R. & Matrone, G. (1966). In vivo interactions of cadmium, copper, zinc and iron in the mouse and rat. J. Nutr. 90, 395–9.CrossRefGoogle ScholarPubMed
Campbell, J. K. & Mills, C. F. (1974). Effects of dietary cadmium and zinc on rats maintained on diets low in copper. Proc. Nutr. Soc. 33, 15A17A.Google ScholarPubMed
Carroll, K. G., Spinelli, F. R. & Goyer, R. A. (1970). Electron probe microanalyzer localization of lead in kidney tissue of poisoned rats. Nature, Lond. 227, 1056.CrossRefGoogle Scholar
Chanda, S. K. & Cherian, M. G. (1973). Isolation and partial characterization of a mercury binding, non-histone protein component from rat kidney nuclei. Biochem. biophys. Res. Commun. 50, 1013–19.CrossRefGoogle Scholar
Chen, R., Hoekstra, W. G. & Ganther, H. E. (1973). An unstable cadmium- binding protein in the soluble fraction of rat testes. Fedn Proc. Fedn Am. Socs exp. Biol. 32, Abst. 3994.Google Scholar
Chen, R., Wagner, P., Ganther, H. E. & Hoekstra, W. G. (1972). A low molecular weight cadmium-binding protein in testes of rats: possible role in cadmium-induced testicular damage. Fedn Proc. Fedn Am. Socs exp. Biol. 31, Abst. 2725.Google Scholar
Choie, D. D. & Richter, G. W. (1972a). Lead poisoning: rapid formation of intranuclear inclusions. Science, N.Y. 177, 1194–5.CrossRefGoogle ScholarPubMed
Choie, D. E. & Richter, G. W. (1972b). Cell proliferation in rat kidney induced by lead acetate and effects of uninephrectomy on the proliferation. Am. J. Path. 66, 265–76.Google ScholarPubMed
Chu, R. C. & Cox, D. H. (1972). Zinc, iron, copper, calcium, cytochrome oxidase, and phospholipid in rats of lactating mothers fed excess zinc. Nutr. Rep. Int. 5, 61–6.Google Scholar
Chvapil, M., Ryan, J. N. & Brada, Z. (1972). Effects of selected chelating agents and metals on the stability of liver lysosomes. Biochem. Pharmac. 21, 10971105.CrossRefGoogle ScholarPubMed
Chvapil, M., Ryan, J. N. & Zukoski, C. F. (1972a). Effect of zinc on lipid peroxidation in liver microsomes and mitochondria. Proc. Soc. exp. Biol. Med. 141, 150–3.CrossRefGoogle Scholar
Chvapil, M., Ryan, J. N. & Zukoski, C. F. (1972b). Effect of zinc and other metals on the stability of lysosomes. Proc. Soc. exp. Biol. Med. 140, 642–6.CrossRefGoogle ScholarPubMed
Clarkson, J. W., Magos, L. & Greenwood, M. R. (1972). Transport of elemental mercury into fetal tissues. Biologia Neonat. 21, 239–44.CrossRefGoogle ScholarPubMed
Coleman, C. B. & Matrone, G. (1969). In vivo effect of zinc on iron induced ferritin synthesis in rat liver. Biochim. biophys. Acta 177, 106–12.CrossRefGoogle ScholarPubMed
Coleman, J. E. & Vallee, B. L. (1961). Metallocarboxypeptidases: stability constants and enzymatic characteristics. J. biol. Chem. 236, 2244–9.CrossRefGoogle ScholarPubMed
Cotzias, G. C. & Papavasiliou, P. S. (1964). Specificity of zinc pathway through the body: homeostatic considerations. Am. J. Physiol. 206, 787–92.CrossRefGoogle ScholarPubMed
Cox, D. H. (1972). Excess dietary zinc and subcellular changes in hepatic zinc, iron and copper in maternal and fetal rats. Nutr. Rep. Int. 5, 145–50.Google Scholar
Cox, D. H. & Harris, D. L. (1960). Effect of excess dietary zinc on iron and copper in the rat. J. Nutr. 70, 514–20.CrossRefGoogle ScholarPubMed
Cramer, K. & Selander, S. (1965). Studies in lead poisoning: comparison between different laboratory tests. Br. J. ind. Med. 22, 311–14.Google ScholarPubMed
Daniel, J. W., Gage, J. C. & Lefevre, P. A. (1971). The metabolism of methoxyethylmercury salts. Biochem. J. 121, 411–15.CrossRefGoogle Scholar
Davies, N. T., Bremner, I. & Mills, C. F. (1973). Studies on the induction of a low-molecular-weight zinc-binding protein in rat liver. Biochem. Soc. Trans. I, 985–7.Google Scholar
De Bruin, A. (1971). Certain biological effects of lead upon the animal organism. Archs envir. Hith 23, 249–69.CrossRefGoogle ScholarPubMed
De Duve, C. (1967). General principles. In Enzyme Cytology (ed. Roodyn, D. B.), pp. 126. London: Academic Press.Google Scholar
Deiss, A., Lee, G. R. & Cartwright, G. E. (1970). Hemolytic anemia in Vilson's disease. Ann. intern. Med. 73, 413–18.CrossRefGoogle ScholarPubMed
Dick, A. T. (1954). Studies on the assimilation and storage of copper in crossbred sheep. Aust. J. agric. Res. 5, 511–44.CrossRefGoogle Scholar
El-Begearmi, H. M., Goudie, C., Ganther, H. E. & Sunde, M. L. (1973). Attempts to quantitate the protective effect of selenium against mercury toxicity using Japanese quail. Fedn Proc. Fedn Am. Socs exp. Biol. 32, Abst. 3756.Google Scholar
Ellis, R. W. & Fang, S. C. (1967). Elimination, tissue accumulation and cellular incorporation of mercury in rats receiving an oral dose of 203Hg-labelled phenylmercuric acetate and mercuric acetate. Toxic. appl. Pharmac. II, 104–13.CrossRefGoogle Scholar
Ellis, R. W. & Fang, S. C. (1971). The in vivo binding of mercury to soluble proteins of the rat kidneys. Toxic. appl. Pharmac. 20, 1421.CrossRefGoogle Scholar
Evans, G. W. (1973). Copper homeostasis in the mammalian system. Physiol. Rev. 53, 535–70.CrossRefGoogle ScholarPubMed
Evans, G. W., Majors, P. F. & Cornatzer, W. E. (1970). Mechanism for cadmium and zinc antagonism of copper metabolism. Biochem. biophys. Res. Commun. 40, 1142–8.CrossRefGoogle ScholarPubMed
Evans, G. W., Myron, D. R., Cornatzer, N. F. & Cornatzer, W. E. (1970). Age-dependent alterations in hepatic subcellular copper distribution and plasma ceruloplasmin. Am. J. Physiol. 218, 298300.CrossRefGoogle ScholarPubMed
Fairbanks, V. F. (1967). Copper sulfate-induced hemolytic anemia. Archs intern. Med. 120, 428–32.CrossRefGoogle ScholarPubMed
Feldman, S. L. & Cousins, R. J. (1973). Inhibition of 1,25-dihydroxy- cholecalciferol synthesis by cadmium in vitro. Fedn Proc. Fedn Am. Socs exp. Biol. 32, Abst. 3932.Google Scholar
Ferm, V. H. & Carpenter, S. J. (1967). Teratogenic effect of cadmium and its inhibition by zinc. Nature, Lond. 216, 1123.CrossRefGoogle ScholarPubMed
Forth, W. & Rummel, W. (1971). Absorption of iron and chemically related metals in vitro and in vivo: specificity of the iron binding system in the mucosa of the jejunum. In Intestinal Absorption of Metal Ions, Trace Elements and Radionuclides (ed. Skoryna, S. C. &Waldon-Edward, D.), pp. 173–91. Oxford: Pergamon Press.CrossRefGoogle Scholar
Fox, M. R. S. & Fry, B. E. (1970). Cadmium toxicity decreased by dietary ascorbic acid supplements. Science, N.Y. 169, 989–91.CrossRefGoogle ScholarPubMed
Fox, M. R. S., Fry, B. E., Harland, B. F., Schertel, M. E. & Weeks, C. E. (1971). Effect of ascorbic acid on cadmium toxicity in the young coturnix. J. Nutr. 101, 12951305.Google ScholarPubMed
Fox, M. R. S., Jacobs, R. M., Fry, B. E. & Harland, B. F. (1973). Effect of protein source on response to cadmium. Fedn Proc. Fedn Am. Socs exp. Biol. 32, Abst. 3968.Google Scholar
Freeland, J. H. & Cousins, R. J. (1973). Effect of dietary cadmium on anemia and iron absorption. Fedn Proc. Fedn Am. Socs exp. Biol. 32, Abst. 3966.Google Scholar
Friberg, L. (1950). Health hazards in the manufacture of alkaline accumulators with special reference to chronic cadmium poisoning. Acta med. scand. 138, Suppl. 240.Google Scholar
Ganther, H. E., Goudie, C., Sunde, M. L., Kopecky, M. J., Wagner, P., Oh, S-H. & Hoekstra, W. J. (1972). Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna. Science, N.Y. 175, 422–4.CrossRefGoogle ScholarPubMed
Ganther, H. E., Wagner, P. A., Sunde, M. L. & Hoekstra, W. G. (1972). Protective effects of selenium against heavy metal toxicities. In Trace substances in environmental health, vol. VI (ed. Hemphill, D. D.), pp. 247–52. Columbia, Missouri: University of Missouri Press.Google Scholar
Garrett, N. E., Garrett, R. J. B. & Archdeacon, J. W. (1972). Placental transmission of mercury to the fetal rat. Toxic. appl. Pharmac. 22, 649–54.CrossRefGoogle Scholar
Goldfischer, S., Schiller, B. & Sternlieb, I. (1970). Copper in hepatocyte lysosomes of the toad, Bufo marinus L. Nature, Lond. 228, 172–3.CrossRefGoogle ScholarPubMed
Goldfischer, S. & Sternlieb, I. (1968). Changes in the distribution of hepatic copper in relation to the progression of Wilson's disease (hepatolenticular degeneration). Am. J. Path. 53, 883–99.Google Scholar
Goyer, R. A. (1971). Lead toxicity: a problem in environmental pathology. Am. J. Path. 64, 167–79.Google ScholarPubMed
Goyer, R. A. & Chisolm, J. J. (1972). Lead. In Metallic contaminants and human health (ed. Lee, D. H. K.), ch. 3. New York: Academic Press.Google Scholar
Goyer, R. A., Krall, A. & Kimball, J. P. (1968). The renal tubule in lead poisoning. II. In vitro studies of mitochondrial structure and function. Lab. Invest. 19, 7883.Google Scholar
Goyer, R. A., May, P., Cates, M. M. & Krigman, M. R. (1970). Lead and protein content of isolated intranuclear inclusion bodies from kidneys of lead-poisoned rats. Lab. Invest. 22, 245–51.Google ScholarPubMed
Grant-Frost, D. R. & Underwood, E. J. (1958). Zinc toxicity in the rat and its interrelation with copper. Aust. J. exp. Biol. 36, 339–46.CrossRefGoogle ScholarPubMed
Greenwood, M. R., Clarkson, T. W. & Magos, L. (1972). Transfer of metallic mercury into the fetus. Experientia 28, 1455–6.CrossRefGoogle Scholar
Gregoriadis, G. & Sourkes, T. L. (1967). Intracellular distribution of copper in the liver of the rat. Can. J. Biochem. 45, 1841–51.CrossRefGoogle ScholarPubMed
Guirgis, H. A., Stewart, W. K. & Taylor, I. W. (1972). Binding of inorganic and organic mercury compounds (203Hg) to constituents of normal human blood. In Environmental Mercury Contamination (ed. Hartung, R. and Dinman, B. D.), pp. 239–46. Ann Arbor, Michigan: Science Publishers, Inc.Google Scholar
Gunn, S. A., Gould, T. C. & Anderson, W. A. D. (1962). Interference with fecal excretion of Zn-65 by cadmium. Proc. Soc. exp. Biol. Med. 111, 559–62.CrossRefGoogle Scholar
Gunn, S. A., Gould, T. C. & Anderson, W. A. D. (1967). Specific response of mesenchymal tissue to cancerigenesis by cadmium. Archs Path. 83, 493–9.Google ScholarPubMed
Gunn, S. A., Gould, T. C. & Anderson, W. A. D. (1968). Selectivity of organ response to cadmium and various protective measures. J. Path. Bact. 96, 8996.CrossRefGoogle ScholarPubMed
Haddow, J. E., Fish, C. A., Marshall, P. C. & Lester, R. (1972). Biliary excretion of mercury enhanced by spironolactone. Gastroenterology 63, 1053–8.CrossRefGoogle ScholarPubMed
Haddow, J. E. & Marshall, P. (1972). Increased stool mercury excretion in the rat: the effect of spironolactone. Proc. Soc. exp. Biol. Med. 140, 707–9.CrossRefGoogle ScholarPubMed
Harris, S. B., Wilson, J. G. & Printz, R. H. (1972). Embryotoxicity of methylmercury chloride in golden hamsters. Teratology 6, 139–42.CrossRefGoogle Scholar
Hasan, J., Vihko, V. & Hernberg, S. (1967). Deficient red cell membrane Na+- and K+-ATPase in lead poisoning. Archs envir. Hith 14, 313–18.CrossRefGoogle ScholarPubMed
Hill, C. H. & Matrone, G. (1970). Chemical parameters in the study of in vivo and in vitro interactions of transition elements. Fedn Proc. Fedn Am. Socs exp. Biol. 29, 1474–81.Google Scholar
Hill, C. H., Matrone, G., Payne, W. L. & Barber, C. W. (1963). In vivo interactions of cadmium with copper, zinc and iron. J. Nutr. 80, 227–35.CrossRefGoogle ScholarPubMed
Holden, H. (1969). Cadmium toxicology. Lancet ii, 57.CrossRefGoogle Scholar
Hursh, J. B. & Suomela, J. (1968). Absorption of Pb-212 from the gastrointestinal tract of man. U.S. atom. Energy Commn UCRL-18140, 217–33.Google Scholar
Imura, N., Sukegawa, E., Pan, S-K., Nagao, K., Kim, J-Y., Kwan, T. & Ukita, T. (1971). Chemical methylation of inorganic mercury with methylcobalamin, a vitamin B12 analog. Science, N.Y. 172, 1248–9.CrossRefGoogle ScholarPubMed
Ishmael, J., Gopinath, C. & Howell, J. McC. (1971). Experimental chronic toxicity in sheep. Histological and histochemical changes during development of the lesions in the liver. Res. vet. Sci. 12, 358–66.CrossRefGoogle ScholarPubMed
Ishmael, J., Gopinath, C. & Howell, J. McC. (1972). Experimental chronic copper toxicity in sheep. Biochemical and haematological studies during the development of lesions in the liver. Res. vet. Sci. 13, 22–9.CrossRefGoogle ScholarPubMed
Itokawa, Y., Abe, T. & Tanaka, S. (1973). Bone changes in experimental chronic cadmium poisoning. Radiological and biological approaches. Archs envir. Hlth 26, 241–4.CrossRefGoogle ScholarPubMed
Jacobs, R. M., Fox, M. R. S. & Fry, B. E. (1972). Temporal changes in quail tissue mineral element concentration on exposure to dietary cadmium and effects of cadmium on retention of mineral elements. Fedn Proc. Fedn Am. Socs exp. Biol. 31, Abst. 2724.Google Scholar
Jacobs, R. M., Fox, M. R. S., Fry, B. E. & Harland, B. F. (1974). Effect of a two-day exposure to dietary cadmium on the concentration of elements in duodenal tissue of Japanese quail. Proc. 2nd Int. Symp. Trace Element Metabolism in Animals (Madison, Wisconsin) (in the Press).Google Scholar
Jakubowski, M., Piotrowski, J. & Trojanowska, B. (1970). Binding of mercury in the rat: studies using 203HgCl2 and gel filtration. Toxic. appl. Pharmac. 16, 743–53.CrossRefGoogle ScholarPubMed
Jensen, S. & Jernelöv, A. (1969). Biological methylation of mercury in aquatic organisms. Nature, Lond. 223, 753–4.CrossRefGoogle ScholarPubMed
Kägi, J. H. R. (1970). Hepatic metallothionein. Abstr. 8th Int. Congr. Biochem. p. 130.Google Scholar
Kägi, J. H. R. & Vallee, B. L. (1960). Metallothionein: a cadmium- and zinc- containing protein from equine renal cortex. J. biol. Chem. 235, 3460–5.CrossRefGoogle ScholarPubMed
Kägi, J. H. R. & Vallee, B. L. (1961). Metallothionein: a cadmium- and zinc-binding protein from equine renal cortex. II. Physicochemical properties. J. biol. Chem. 236, 2435–42.CrossRefGoogle Scholar
Kehoe, R. A. (1961). The metabolism of lead in man in health and disease. Present hygienic problems relating to the absorption of lead. Jl R. Inst. pubi. Hith Hyg. 24, 177203.Google Scholar
Kench, J. E. & Sutherland, E. M. (1966). The nature and origin of the minialbumin found in cadmium-poisoned animals. S. Afr. med. J. 40, 109–16.Google ScholarPubMed
Knera, K. S. (1973). Reproductive capability of male rats and mice treated with methylmercury. Toxic. appl. Pharmac. 24, 167–77.Google Scholar
King, B. G. (1971). Maximum daily intake of lead without excessive body lead burden in children. Am. J. Dis. Child. 122, 337–40.Google ScholarPubMed
Klauder, D. S., Murthy, L. & Petering, H. G. (1972). Effect of dietary intake of lead acetate on copper metabolism in male rats. In Trace substances in environmental health, vol. VI (ed. Hemphill, D. D.), pp. 131–6. Columbia, Missouri: University of Missouri Press.Google Scholar
Kobayasha, J., Nakahara, H. & Hasegawa, T. (1971). Accumulation of cadmium in mice fed cadmium-polluted rice. Nippon Eiseigaku Zasshi 26, 401–7.CrossRefGoogle Scholar
Kojima, K. & Fujita, M. (1973). Summary of recent studies in Japan on methylmercury poisoning. Toxicology I, 4362.CrossRefGoogle Scholar
Kostial, K., Simonovic, I. & Pisonic, M. (1971a). Lead absorption from the intestine in newborn rats. Nature, Lond. 233, 564.CrossRefGoogle ScholarPubMed
Kostial, K., Simonovic, I. & Pisonic, M. (1971b). Reduction of lead absorption from the intestine in newborn rats. Environ. Res. 4, 360–3.CrossRefGoogle ScholarPubMed
Lal, S. & Sourkes, T. L. (1971). Intracellular distribution of copper in the liver during chronic administration of copper sulfate to the rat. Toxic. appl. Pharmac. 18, 562–72.CrossRefGoogle ScholarPubMed
Larsson, S. E. & Piscator, M. (1971). Effect of cadmium on skeletal tissue in normal and calcium-deficient rats. Israel J. med Sci. 7, 495–8.Google ScholarPubMed
Lauwerys, R. & Buchet, J. P. (1972). Mechanism of lysosome labilization by inorganic mercury. Eur. J. Biochem. 26, 535–42.CrossRefGoogle ScholarPubMed
Lederer, L. B. & Bing, F. C. (1940). Effect of calcium and phosphorus on retention of lead by growing organisms. J. Am. med. Ass. 114, 2457–61.CrossRefGoogle Scholar
Lee, D. & Matrone, G. (1969). Iron and copper effects on ceruloplasmin activity of rats with zinc-induced copper deficiency. Proc. Soc. exp. Biol. Med. 130, 1190–3.CrossRefGoogle ScholarPubMed
Lee, G. R., Nacht, S., Lukens, J. N. & Cartwright, G. E. (1968). Iron metabolism in copper-deficient swine. J. clin. Invest. 47, 2058–69.CrossRefGoogle ScholarPubMed
Lewis, P. K., Hoekstra, W. G. & Grummer, R. H. (1957). Restricted calcium feeding versus zinc supplementation for the control of parakeratosis in swine. J. Aiim. Sci. 16, 578–88.Google Scholar
Lindquist, R. R. (1967). Studies on the pathogenesis of hepatolenticular degeneration. I. Acid phosphatase activity in copper-loaded livers. Am. J. Path. 51, 471–81.Google ScholarPubMed
Lindquist, R. R. (1968). Studies on the pathogenesis of hepatolenticular degeneration. III. The effect of copper on rat liver lysosomes. Am. J. Path. 53, 903–22.Google Scholar
Lucier, G. W., Matthews, H. B., Brubaker, P. E., Klein, R. & McDaniel, O. S. (1973). Effects of methylmercury on microsomal mixed-function oxidase. Mol. Pharmacol. 9, 237–46.Google ScholarPubMed
Macara, I. G., Hoy, T. G. & Harrison, P. M. (1973). Inhibition by zinc ions of ferritin synthesis in vitro. Biochem. Soc. Trans. I, 102–4.CrossRefGoogle Scholar
McCall, J. T. & Davis, G. K. (1961). Effect of dietary protein and zinc on the absorption and liver deposition of radioactive and total copper. J. Nutr. 74, 4550.CrossRefGoogle Scholar
McIntyre, N., Clink, H. M., Levi, A. J., Cumings, J. N. & Sherlock, S. (1967). Hemolytic anemia in Wilson's disease. New Engl. J. Med. 276, 439–44.CrossRefGoogle ScholarPubMed
McNatt, E. N., Campbell, W. G. & Callahan, B. C. (1971). Effects of dietary copper loading on livers of rats. I. Changes in subcellular acid phosphatases and detection of an additional acid π-nitrophenylphosphatase in the cellular supernatant during copper loading. Am. J. Path. 64, 123–44.Google Scholar
Macpherson, A. & Hemingway, R. G. (1965). Effects of protein intake on the storage of copper in the liver of sheep. J. Sci. Fd Agric. 16, 220–7.CrossRefGoogle Scholar
Mahaffey, K. R., Goyer, R. A. & Haseman, J. K. (1973). Dose-response to lead ingestion in rats fed low dietary calcium. J. Lab, clin. Med. 82, 92100.Google ScholarPubMed
Magee, A. C. & Matrone, G. (1960). Studies on growth, copper metabolism and iron metabolism of rats fed high levels of zinc. J. Nutr. 72, 233–42.CrossRefGoogle ScholarPubMed
Marston, H. R. (1950). In Copper Metabolism (ed. McElroy, W. D. and Glass, B.), pp. 272313. Baltimore, Md: Johns Hopkins Press.Google Scholar
Mego, J. L. & Barnes, J. (1973). Inhibition of heterolysosome formation and function in mouse kidneys by injection of mercuric chloride. Biochem. Pharmac. 22, 373–81.CrossRefGoogle ScholarPubMed
Metz, E. N. (1969). Mechanism of hemolysis by excess copper. Clin. Res. 17, 32.Google Scholar
Metz, E. N. & Sagone, A. L. (1972). The effect of copper on the erythrocyte hexose monophosphate shunt pathway. J. Lab. clin. Med. 80, 405–13.Google ScholarPubMed
Miller, V. L., Klavano, P. A. & Csonka, E. (1960). Absorption, distribution and excretion of phenylmercuric acetate. Toxic. appl. Pharmac. 2, 344–52.CrossRefGoogle ScholarPubMed
Miller, V. L., Klavano, P. A., Jerstad, A. C. & Csonka, E. (1961). Absorption, distribution and excretion of ethylmercuric chloride. Toxic. appl. Pharmac. 3, 459–68.CrossRefGoogle ScholarPubMed
Mills, C. F. (1974). Trace element interactions: effects of dietary composition on the development of imbalance and toxicity. Proc. 2nd Int. Symp. Trace Element Metabolism in Animals (Madison, Wisconsin) (in the Press).Google Scholar
Mills, C. F. & Dalgarno, A. C. (1972). Copper and zinc status of ewes and lambs receiving increased dietary concentrations of cadmium. Nature, Lond. 239, 171–3.CrossRefGoogle ScholarPubMed
Müller, H. A. & Stöcker, E. (1964). Autoradiographische Befunde an den direkten Kerneinschlüssen im Haupstückepithel der Rattenniere nach experimenteller Bleivergiftung. Experientia 20, 379–80.CrossRefGoogle Scholar
Nicaud, P., Lafitte, A. & Gros, A. (1942). Les troubles de I'intoxication chronique par le cadmium. Archs Mal. prof. Méd. trav. 4, 192–8.Google Scholar
Nordberg, G. F. (1971). Effects of acute and chronic cadmium exposure on the testicles of mice. With special reference to protective effects of metallothionein. Environ. Physiol. I, 171–87.Google Scholar
Nordberg, G. R. (1972). Cadmium metabolism and toxicity. Experimental studies on mice with special reference to the use of biological materials as indices of retention and the possible role of metallothionein in transport and detoxification of cadmium. Environ. Physiol. Biochem. 2, 736.Google Scholar
Nordberg, G. F., Nordberg, M., Piscator, M. & Vesterberg, O. (1972). Separation of two forms of rabbit metallothionein by isoelectric focusing. Biochem. J. 126, 491–8.CrossRefGoogle ScholarPubMed
Nordberg, G. F. & Piscator, M. (1972). Influence of long-term cadmium exposure on urinary excretion of protein and cadmium in mice. Environ. Physiol. Biochem. 2, 3749.Google Scholar
Nordberg, G. F., Piscator, M. & Nordberg, M. (1971). On the distribution of cadmium in blood. Acta pharmac. tox. 30, 289–95.CrossRefGoogle ScholarPubMed
Norseth, T. (1968). The intracellular distribution of mercury in rat liver after a single injection of mercuric chloride. Biochem. Pharmac. 17, 581–93.CrossRefGoogle ScholarPubMed
Norseth, T. (1969). Studies on the biotransformation of methylmercury salts in the rat. Ph.D. Thesis, University of Rochester, New York.Google Scholar
Norseth, T. & Clarkson, T. W. (1970). Biotransformation of methylmercury salts in the rat studied by specific determination of inorganic mercury. Biochem. Pharmac. 19, 2775–83.CrossRefGoogle ScholarPubMed
Null, D. H., Gartside, P. S. & Wei, E. (1973). Methylmercury accumulation in brains of pregnant, nonpregnant and foetal rats. Life Sci. 12, pt. 2, 6572.CrossRefGoogle Scholar
Osaki, S., Johnson, D. A. & Frieden, E. (1966). The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J. biol. Chem. 241, 2746–51.CrossRefGoogle ScholarPubMed
Ott, E. A., Smith, W. H., Harrington, R. B. & Beeson, W. M. (1966a). Zinc toxicity in ruminants. II. Effect of high levels of dietary zinc on gains, feed consumption and feed efficiency of beef cattle. J. Anim. Sci. 25, 419–23.CrossRefGoogle Scholar
Ott, E. A., Smith, W. H., Harrington, R. B. & Beeson, W. M. (1966b). Zinc toxicity in ruminants. I. Effect of high levels of dietary zinc on gains, feed consumption and feed efficiency of lambs. J. Anim. Sci. 25, 414–18.CrossRefGoogle Scholar
Ott, E. A., Smith, W. H., Harrington, R. B., Parker, H. E. & Beeson, W. M. (1966). Zinc toxicity in ruminants. IV. Physiological changes in the tissues of beef cattle. J. Anim. Sci. 25, 432–8.CrossRefGoogle Scholar
Parizek, J. (1957). The destructive effect of cadmium ion on testicular tissue and its prevention by zinc. J. Endocr. 15, 5663.CrossRefGoogle ScholarPubMed
Parizek, J., Benes, I., Kalouskova, J., Babicky, A. & Lener, J. (1969). Metabolic interrelationships of trace elements. Effects of zinc salts on the survival of rats intoxicated with cadmium. Physiologia bohemoslov. 18, 8993.Google Scholar
Parizek, J., Ostadalova, I., Kalouskova, J., Babicky, A. & Benes, J. (1971). The detoxifying effects of selenium. Interrelationships between compounds of selenium and certain metals. In Newer Trace Elements in Nutrition (ed. Mertz, W. and Cornatzer, W. E.), pp. 85120. New York: Marcel Dekker, Inc.Google Scholar
Partridge, S. M. (1969). Trace metals and the cross-linking system of the protein fibres of connective tissue. In Nutritional Aspects of the Development of Bone and Connective Tissues. Bibl. Nutritio et Dieta 13, 99110. Karger, Basel: New York.CrossRefGoogle Scholar
Passow, H. & Tilmann, K. (1955). Potassium loss from lead-poisoned, human erythrocytes. Pflügers Arch. ges. Physiol. 262, 2336.CrossRefGoogle Scholar
Paterson, R. A. & Usher, D. R. (1971). Acute toxicity of methylmercury on glycolytic intermediates and adenine nucleotides of rat brain. Life Sci. 10 (pt 2), 121–8.CrossRefGoogle Scholar
Pekkanen, T. J. & Lindberg, L. A. (1972). Ultrastructure and microsomal protein content of mouse liver treated with methylmercury. Acta Pharmac. tox. 31, 337–40.CrossRefGoogle Scholar
Pekkanen, T. J. & Salminen, K. (1973). Inductive effect of methylmercury on the hepatic microsomes of mice. Ada Pharmac. tox. 32, 289–93.CrossRefGoogle ScholarPubMed
Pekkanen, T. J. & Sandholm, M. (1972). Effect of experimental methyl- mercury poisoning on activity of TPNH-specific glutathione reductase of rat brain and liver. Acta vet. scand. 13, 1419.Google ScholarPubMed
Perry, H. M. (1968). Hypertension and trace metals, particularly cadmium. In Trace Substances in Environmental Health, vol. II (ed. Hemphill, D. D.), pp. 101–26. Columbia, Missouri: University of Missouri Press.Google Scholar
Perry, H. M., Pierce, J. A., Hirst, R. N., Purifoy, J. E., Perry, E. F. & Cruz, M. (1972). Elevated pulmonary cadmium in emphysematous subjects without known cadmium exposure. In Trace Substances in Environmental Health, vol. VI (ed. Hemphill, D. D.), pp. 207–14. Columbia, Missouri: University of Missouri Press.Google Scholar
Philip, E. (1973). Intracellular distribution of copper in sheep liver and its response to the administration of copper sulphate. M.Sc. Thesis, University of Aberdeen.Google Scholar
Piscator, M. (1964). On cadmium in normal human kidney together with a report on the isolation of metallothionein from livers of cadmium-exposed rabbits. Nord. hyg. Tidskr. 45, 7682.Google Scholar
Piscator, M. (1966). Proteinuria in Chronic Cadmium Poisoning. Stockholm: Beckman'sGoogle ScholarPubMed
Porter, H. (1964). Tissue copper proteins in Wilson's disease. Archs Neurol. II, 341–9.CrossRefGoogle Scholar
Porter, H. (1971). Neonatal hepatic mitochondrocuprein. IV. Sulfitolysis of the cystine-rich crude copper protein and isolation of a peptide containing more than 35 % half-cystine. Biochim. biophys. Acta 229, 143–54.CrossRefGoogle ScholarPubMed
Porter, H. & Hills, J. R. (1974). The half-cystine-rich copper protein of newborn liver. Probable relationship to metallothionein and subcellular localization in non-mitochondrial particles possibly representing heavy lysosomes. Proc. 2nd Int. Symp. Trace Element Metabolism in Animals (Madison, Wisconsin) (in the Press).Google Scholar
Porter, H., Wiener, W. & Barker, M. (1961). The intracellular distribution of copper in immature liver. Biochim. biophys. Acta 52, 419–23.CrossRefGoogle ScholarPubMed
Potter, G. D., McIntyre, D. R. & Vattuone, G. M. (1971). Fate and implications of lead-203 ingestion in a dairy cow and calf. Hith Phys. 20, 650–3.Google Scholar
Potter, S. D. & Matrone, G. (1973). Effect of selenite on toxicity and retention of dietary methylmercury and mercuric chloride. Fedn Proc. Fedn Am. Socs exp. Biol. 32, Abst. 3997.Google Scholar
Pulido, P., Kägi, J. H. R. & Vallee, B. L. (1966). Isolation and some properties of human metallothionein. Biochemistry, N.Y. 5, 1768–77.CrossRefGoogle ScholarPubMed
Quarterman, J., Morrison, J. N. & Carey, L. F. (1972). In Trace Substances in Environmental Health, vol. VII (ed. Hemphill, D. D.). Columbia, Missouri: University of Missouri Press (in the Press).Google Scholar
Rhyne, B. C. & Goyer, R. A. (1971). Cytochrome content of kidney mitochondria in experimental lead poisoning. Exp. mol. Path. 14, 386–91.CrossRefGoogle ScholarPubMed
Richter, G. W., Kress, Y. & Cornwall, C. C. (1968). Another look at lead inclusion bodies. Am. J. Path. 53, 189217.Google Scholar
Ritchie, H. D., Luecke, R. W., Baltzer, B. V., Miller, E. R., Ullrey, D. E. & Hoefer, J. A. (1963). Copper and zinc interrelationships in the pig. J. Nutr. 79, 117–23.CrossRefGoogle ScholarPubMed
Rizzo, A. M. & Furst, A. (1972). Mercury teratogenesis in the rat. Proc. West. Pharmac. Soc. 15, 52–4.Google Scholar
Ross, D. B. (1966). The diagnosis, prevention and treatment of chronic copper poisoning in housed lambs. Br. vet. J. 122, 279–84.CrossRefGoogle Scholar
Rubino, G. E., Pagliandi, E., Prato, V. & Giangrandi, E. (1958). Erythrocyte copper and porphyrin in lead poisoning. Br. J. Haemat. 4, 103–7.CrossRefGoogle ScholarPubMed
Salmon, M. A. & Wright, T. (1971). Chronic copper poisoning presenting as pink disease. Archs Dis. Childh. 46, 108–10.CrossRefGoogle ScholarPubMed
Salvati, A. M., Ambrogioni, M. T. & Tentoni, L. (1969). The autoxidation of hemoglobin. Effect of copper. Ital. J. Biochem. 18, 118.Google ScholarPubMed
Salvidio, E., Pannacciulli, I. & Tizianello, A. (1963). Glucose-6-phosphate and 6-phosphogluconic dehydrogenase activities in the red blood cells of several animal species. Nature, Lond. 200, 372–3.CrossRefGoogle Scholar
Schlicker, S. A. & Cox, D. H. (1968). Maternal dietary zinc, and development and zinc, iron and copper content of the rat fetus. J. Nutr. 95, 287–94.CrossRefGoogle ScholarPubMed
Schroeder, H. A. (1964). Cadmium hypertension in rats. Am. J. Physiol. 207, 62–6.CrossRefGoogle ScholarPubMed
Schroeder, H. A. (1965). Cadmium as a factor in hypertension. J. chron. Dis. 18, 647–56.CrossRefGoogle Scholar
Schroeder, H. A. & Tipton, I. H. (1968). The human body burden of lead. Archs envir. Hlth 17, 965–78.CrossRefGoogle ScholarPubMed
Schwarz, K. (1974). New essential trace elements (Sn, V, F, 5:): Progress report and outlook. Proc. 2nd Int. Symp. Trace Element Metabolism in Animals (Madison, Wisconsin) (in the Press).Google Scholar
Scott, K. M., Huang, K. M., Jurkowitz, M. & Brierley, G. P. (1971). Ion transport by heart mitochondria. XXIII. Effects of lead on mitochondrial reactions. Archs Biochem. Biophys. 147, 557–67.CrossRefGoogle Scholar
Settlemire, C. T. & Matrone, G. (1967a). In vivo interference of zinc with ferritin iron in the rat. J. Nutr. 92, 153–8.CrossRefGoogle ScholarPubMed
Settlemire, C. T. & Matrone, G. (1967b). In vivo effect of zinc on iron turnover in rats and life span of the erythrocyte. J. Nutr. 92, 159–64.CrossRefGoogle Scholar
Shaikh, Z. H. & Lucis, O. J. (1970). Induction of cadmium-binding protein. Fedn Proc. Fedn Am. Socs exp. Biol. 29, Abst. 301.Google Scholar
Shearer, G. D., Innes, J. M. & McDougall, E. I. (1940). Swayback studies in North Derbyshire. Vet. J. 16, 309–22.Google Scholar
Shields, J. B. & Mitchell, H. H. (1941). The effect of calcium and phosphorus on the metabolism of lead. J. Nutr. 21, 541–52.CrossRefGoogle Scholar
Six, K. M. & Goyer, R. A. (1970). Experimental enhancement of lead toxicity by low dietary calcium. J. Lab. clin. Med. 76, 933–42.Google ScholarPubMed
Six, K. M. & Goyer, R. A. (1972). The influence of iron deficiency on tissue content and toxicity of ingested lead in the rat. J. Lab. clin. Med. 79, 128–36.Google ScholarPubMed
Snaith, S. M. & Levvy, G. A. (1969). Purification and properties of α-D-mannosidase from rat epididymis. Biochem. J. 114, 2533.CrossRefGoogle ScholarPubMed
Sobel, A. E., Gawron, O. & Kramer, B. (1938). Influence of vitamin D in experimental lead poisoning. Proc. Soc. exp. Biol. Med. 38, 433–5.CrossRefGoogle Scholar
Sobel, A. E., Yuska, H., Peters, D. D. & Kramer, B. (1940). The biochemical behaviour of lead. I. Influence of calcium, phosphorus, and vitamin D on lead in blood and bone. J. biol. Chem. 132, 239–65.CrossRefGoogle Scholar
Spyker, J. M. & Smithberg, M. (1972). Effects of methylmercury on prenatal development in mice. Teratology 5, 181–90.CrossRefGoogle ScholarPubMed
Starcher, B. C. (1969). Studies on the mechanism of copper absorption in the chick. J. Nutr. 97, 321–6.CrossRefGoogle ScholarPubMed
Sukai, K. (1972). Effect of methylmercury on rat spermatogenesis. Kumarnoto med. J. 25, 94100.Google Scholar
Supplee, W. C. (1963). Antagonistic relationship between dietary cadmium and zinc. Science, N.Y. 139, 119–20.CrossRefGoogle ScholarPubMed
Suttle, N. F. & Mills, C. F. (1966a). Studies of the toxicity of copper to pigs. I. Effects of oral supplements of zinc and iron salts on the development of copper toxicosis. Br. J. Nutr. 20, 135–48.CrossRefGoogle ScholarPubMed
Suttle, N. F. & Mills, C. F. (1966b). Studies of the toxicity of copper to pigs. 2. Effect of protein source and other dietary components on the response to high and moderate intakes of copper. Br. J. Nutr. 20, 149–61.CrossRefGoogle ScholarPubMed
Sutton, W. R. & Nelson, V. E. (1937). Studies on zinc. Proc. Soc. exp. Biol. Med. 36, 211–13.CrossRefGoogle Scholar
Suzuki, T., Matsumoto, N., Miyama, T. & Katsunuma, H. (1967). Placental transfer of mercuric chloride, phenylmercury acetate and methylmercury acetate in mice. Ind. Health 5, 149–55.CrossRefGoogle Scholar
Swensson, A. & Ulfvarson, U. (1968). Distribution and excretion of various mercury compounds after single injections in poultry. Acta Pharmac. tox. 26, 259–72.CrossRefGoogle ScholarPubMed
Taguchi, Y. (1971). Microdetermination of total mercury and the dynamic aspects of the methylmercury compounds in animal organisms. 2. Behaviour of low-concentration methylmercury compounds in vivo. Nippon Eseigaku zasshi 25, 563–73.CrossRefGoogle Scholar
Takeda, Y., Konugi, T., Hoshino, I. O. & Ukita, T. (1968). Distribution of inorganic aryl and alkyl mercury compounds in rats. Toxic. appl. Pharmac. 13, 156–64.CrossRefGoogle ScholarPubMed
Takeuchi, T. (1972). Biological reactions and pathological changes in human beings and animals caused by organic mercury contamination. In Environmental Mercury Contamination (ed. Hartung, R. and Dinman, B. D.), pp. 247–89. Ann Arbor, Michigan: Science Publ. Inc.Google Scholar
Taylor, N. S. (1965). Histochemical studies of nephrotoxicity with sublethal doses of mercury in rats. Am. J. Path. 46, 121.Google ScholarPubMed
Tejning, S. (1970). Mercury contents in blood corpuscles and in blood plasma in non-fisheaters. Report 70 04 06 from Dept. Occup. Med., University Hospital, Lund, Sweden.Google Scholar
Todd, J. R. (1969). Chronic copper toxicity of ruminants. Proc. Nutr. Soc. 28, 189–98.CrossRefGoogle ScholarPubMed
Todd, J. R. (1972). Copper, molybdenum and sulphur contents of oats and barley in relation to chronic copper poisoning in housed sheep. J. agric. Sci., Camb 79, 191–5.CrossRefGoogle Scholar
Todd, J. R. & Thompson, R. H. (1963). Studies of chronic copper poisoning. II. Biochemical studies of the blood of sheep during the haemolytic crisis. Brit. vet. J. 119, 189–98.Google Scholar
Tsuchiya, K. (1969). Causation of ouch-ouch disease (Itai-Itai Byō). An introductory review. Part I. Nature of the disease. Part II. Epidemiology and evaluation. Keio J. Med. 18, 181–94, 195–211.CrossRefGoogle Scholar
Ulmer, D. D. & Vallee, B. L. (1968). Effects of lead on biochemical systems. In Trace Substances in Environmental Health, vol. II (ed. Hemphill, D. D.), pp. 727. Columbia, Missouri: University of Missouri Press.Google Scholar
Van Adrichem, P. W. M. (1965). Changes in the activity of serum enzymes and in the lactic dehydrogenase isoenzyme pattern in chronic copper intoxication in sheep. Tijdschr. Diergeneesk. 90, 1371–81.Google Scholar
Van Campern, D. R. (1966). Effects of zinc, cadmium, silver and mercury on the absorption and distribution of copper-64 in rats. J. Nutr. 88, 125–30.CrossRefGoogle Scholar
Van Campen, D. R. (1969). Copper interference with the intestinal absorption of zinc-65 by rats. J. Nutr. 97, 104–8.CrossRefGoogle ScholarPubMed
Van Campen, D. R. & Scaife, P. U. (1967). Zinc interference with copper absorption in rats. J. Nutr. 91, 473–6.CrossRefGoogle ScholarPubMed
Verity, M. A., Gambell, J. K., Reith, A. R. & Brown, W. J. (1967). Sub-cellular distribution and enzyme changes following subacute copper intoxication. Lab. Invest. 16, 580–90.Google Scholar
Verity, M. A. & Reith, A. (1967). Effect of mercurial compounds on structure- linked latency of lysosomal hydrolases. Biochem. J. 105, 685–90.CrossRefGoogle ScholarPubMed
Vostal, J. & Heller, J. (1968). Renal excretory mechanisms of heavy metals. I. Transtubular transport of heavy metal ions in the avian kidney. Environ. Res. 2, 110.Google ScholarPubMed
Waites, G. M. H. & Setchell, B. P. (1966). Changes in blood flow and vascular permeability of the testis, epididymis and accessory reproductive organs of the rat after the administration of cadmium chloride. J. Endocr. 34, 329–42.CrossRefGoogle ScholarPubMed
Waldron, H. A. (1966). The anaemia of lead poisoning: a review. Br. J. md. Med. 23, 83100.Google ScholarPubMed
Walker-Smith, J. & Blomfield, J. (1973). Wilson's disease or chronic copper poisoning? Archs Dis. Childh. 48, 476–9.CrossRefGoogle ScholarPubMed
Wallace, H. D., McCall, J. T., Bass, B. & Combs, G. E. (1960). High levels of copper for growing-finishing swine. J. Anim. Sd. 19, 1153–63.CrossRefGoogle Scholar
Waxman, H. S. & Rabinowitz, M. (1966). Control of reticulocyte polyribosome content and hemoglobin synthesis by heme. Biochim. biophys. Acta 129, 369–79.CrossRefGoogle Scholar
Webb, M. (1972a). Binding of cadmium ions by rat liver and kidney. Biochem. Pharmac. 21, 2751–65.CrossRefGoogle ScholarPubMed
Webb, M. (1972b). Protection by zinc against cadmium toxicity. Biochem. Pharmac. 21, 2767–71.CrossRefGoogle ScholarPubMed
Webb, M. (1972c). Biochemical effects of Cdl2+-injury in the rat and mouse testis. J. Reprod. Fert. 30, 8398.CrossRefGoogle ScholarPubMed
Webb, M. (1972d). Persistence of stored Cd2+ in the livers and kidneys of female rats during pregnancy. J. Reprod. Fert. 30, 99103.CrossRefGoogle Scholar
Whanger, P. D. & Weswig, P. H. (1971). Effect of supplementary zinc on intracellular distribution of hepatic copper in rats. J. Nutr. 101, 1093–8.CrossRefGoogle ScholarPubMed
Who (1972). Evaluation of certain food additives and the contaminants mercury, lead and cadmium. WHO Technical Report Series no. 505.Google Scholar
Willoughby, R. A., MacDonald, E., McSherry, B.J. & Brown, G. (1972). Lead and zinc poisoning and the interaction between Pb and Zn poisoning in the foal. Can. J. comp. Med. 36, 348–59.Google ScholarPubMed
Winger, D. R. & Rajagopalan, K. V. (1972). Purification and some properties of cadmium-binding protein from rat liver. Archs Biochem. Biophys. 153, 755–62.CrossRefGoogle Scholar
Wisniewska, J. M., Trojanowska, B., Piotrowski, J. & Jakibowski, M. (1970). Binding of mercury in the rat kidney by metallothionein. Toxic. appl. Pharmac. 16, 754–63.CrossRefGoogle ScholarPubMed
Wisniewska-Knypl, J. M. & Jablponska, J. (1970). Selective binding of cadmium in vivo on metallothionein in rat's liver. Bull. acad. po1. Sci. Cl. II. Sér. Sci. biol. 18, 325–7.Google Scholar
Wood, J. M., Kennedy, F. S. & Rosen, C. G. (1968). Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature, Lond. 220, 173–4.CrossRefGoogle ScholarPubMed
Yang, M. G., Krawford, K. S., Garcia, J. D., Wang, J. H. C. & Lei, K. Y. (1972). Deposition of mercury in fetal and maternal brain. Proc. Soc. exp. Biol. Med. 141, 1004–7.CrossRefGoogle ScholarPubMed
Yang, M. G., Wang, J. H. C., Garcia, J. D., Post, E. & Lei, K. Y. (1973). Mammalian transfer of mercury-203 from mothers to brains of nursing rats. Proc. Soc. exp. Biol. Med. 142, 722–6.CrossRefGoogle Scholar
Yoshikawa, H. (1970). Preventive effect of pretreatment with low dose of metals in acute toxicity of metals in mice. Ind. Health 8, 184–91.CrossRefGoogle Scholar