Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-16T01:39:58.180Z Has data issue: false hasContentIssue false

Amino acid sequence, haem-iron co-ordination geometry and functional properties of mitochondrial and bacterial c-type cytochromes

Published online by Cambridge University Press:  17 March 2009

Hans Senn
Affiliation:
Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule, ETH-Hönggerberg, CH-80g3 Zürich, Switzerland
Kurt Wüthrich
Affiliation:
Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule, ETH-Hönggerberg, CH-80g3 Zürich, Switzerland

Extract

Cytochromes are found in all biological oxidation Systems which involve transport of reducing equivalents through organized chains of membrane bound intermediates, regardless of the ultimate oxidant (Keilin, 1966; Bartsch, 1978; Meyer & Kamen, 1982). Thus, cytochromes are present not only in the aerobic mitochondrial and bac-terial respiratory chain, but are also found in much more diversified procariotic Systems, including all varieties of facultative anaerobes (nitrate and nitrite reducers), obligate anaerobes (sulphate reducers and phototrophic sulphur bacteria), facultative photoheterotrophes (phototrophic non-sulphur purple bacteria), and the photoautotrophic cyanobacteria (blue-green algae). Among the different types of cytochromes occurring in the cell, the soluble c-type cytochromes (‘class I’, Meyer & Kamen, 1982) are the most abundant and best characterized group of proteins (Bartsch, 1978; Meyer & Kamen, 1982; Dickerson & Timkovitch, 1975; Lemberg & Barrett, 1973; Salemme, 1977; Ferguson-Miller, Brautigan & Margoliash, 1979). The amino acid sequences of more than 80 mitochrondrial and close to 40 bacterial cytochromes c are known (Meyer & Kamen, 1982; Dickerson & Timkovitch, 1975; Schwartz & Dayhoff, 1976; Dayhoff & Barker, 1978).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambler, R. P., Daniel, M., Hermoso, J., Meyer, T. E., Bartsch, R. G. & Kamen, M. D. (1979 a). Cytochrome c2 sequence variation among the recognized species of purple non-sulphur photosynthetic bacteria. Nature, Lond. 278, 659660.CrossRefGoogle Scholar
Ambler, R. P., Meyer, T. E. & Kamen, M. D. (1979 b). Anomalies in amino acid sequence of small cytochromes c and cytochromes c' from two species of purple photosynthetic bacteria. Nature, Lond. 278, 661662.CrossRefGoogle ScholarPubMed
Bartsch, R. G. (1978). Cytochromes. In The Photosynthetic Bacteria (ed. Clayton, R. K. and Sistrom, W. R.), pp. 249279. New York: Plenum Press.Google Scholar
Bertrand, P., Bruschi, M., Denis, M., Gayda, J. P. & Manca, F. (1982). Cytochrome c-553 from Desulfovibrio vulgaris: Potentiometric characterization by optical and EPR studies. Biochem. biophys. Res. Commun. 106, 756760.CrossRefGoogle ScholarPubMed
Böhme, H., Brütsch, S., Weithmann, G. & Böger, P. (1980). Isolation and characterization of soluble cytochrome c-553 and membranebound cytochrome f-553 from thylakoids of the green algae Scenedesmus acutus. Biochim. biophys. Acta 590, 248260.CrossRefGoogle Scholar
Bruschi, M. & LeGall, J. (1972). C-type cytochromes of Desulfovibrio vulgaris. The primary structure of cytochrome c-553. Biochim. biophys. Acta. 271, 4860.CrossRefGoogle ScholarPubMed
Dayhoff, M. O. & Barker, W. C. (1978). Cytochromes. In Atlas of Protein Sequence and Structure, vol. 5, Suppl. 3 (ed. Dayhoff, M. O.), pp. 2944. Washington: Natl. Biomed. Res. Found.Google Scholar
DeVault, D. (1980). Quantum mechanical tunnelling in biological Systems. Q. Rev. Biophys. 13, 387564.CrossRefGoogle ScholarPubMed
Dickerson, R. E. (1980 a). Cytochrome c and the evolution of energy metabolism. Scient. Am. 242 (3), 99112.CrossRefGoogle ScholarPubMed
Dickerson, R. E. (1980 b). Evolution and gene transfer in purple photosynthetic bacteria. Nature, Lond. 283 210212.CrossRefGoogle ScholarPubMed
Dickerson, R. E. (1980 c). The cytochromes c. An Exercise in Scientific Serendipity. In Evolution of Protein Structure and Function, vol. 21 (ed. Sigman, D. S. & Blazier, M. A. B.). New York: Academic Press.Google Scholar
Dickerson, R. E. & Timkovich, R. (1975). Cytochromes c. in The Enzymes, vol. xi (ed. Boyer, P. D.), pp. 397547. New York: Academic Press.Google Scholar
Errede, B. & Kamen, M. D. (1978). Comparative kinetic studies of Cvtochromes c in reactions with mitochondrial Cvtochrome c Oxidase and Reductase. Biochemistry. 17, 10151027.CrossRefGoogle Scholar
Ferguson-Miller, S., Brautigan, D. L. & Margoliash, E. (1979). The electron transfer function of Cvtochrome c. In The Porphyrins, vol. vii. (ed. Dolphin, D.)., pp. 149240. New York: Academic Press.CrossRefGoogle Scholar
Fiechtner, M. D. & Kassner, R. J. (1978). Axial ligation and heme environment in Cytochrome c-555 from Prosthecochloris aestuarii. Investigation by absorption and solvent perturbation difference spectroscopy. Biochemistry. 17, 10281031.CrossRefGoogle ScholarPubMed
Goldkorn, T. & Schejter, A. (1976). The redox potential of Cytochrome c-552 from Euglena gracilis: A thermodynamic study. Archs Biochem. Biophys. 177, 3945.CrossRefGoogle ScholarPubMed
Gupta, R. K. & Redfield, A. G. (1970). NMR double resonance study of azidoferriCvtochrome c. Biochem. biophys. Res. Commun. 41, 273281.CrossRefGoogle ScholarPubMed
Hopfield, J. J. (1974). Electron transfer between biological molecules by thermally activated tunnelling. Proc. natn. Acad. Sci. U.S.A. 71, 36403644.Google Scholar
Horio, T. (1958). Terminal oxidation System in bacteria. J. Biochem., Tokyo. 45, 267279.CrossRefGoogle Scholar
Jortner, J. (1976). Temperature dependent activation energy for electron transfer between biological molecules. J. chem. Phys. 64, 48604867.Google Scholar
Kassner, R. J. (1972). Effects of non-polar environments on the redox potentials of heme complexes. Proc. natn. Acad. Sci. U.S.A. 69, 22632267.CrossRefGoogle Scholar
Kassner, R. J. (1973). A theoretical model for the effects of local nonpolar heme environments on the redox potentials in Cvtochromes. J. Am. chem. Soc. 95, 26742677.Google Scholar
Keilin, D. (1966). The History of Cell Respiration and Cytochrome. Cambridge University Press.Google Scholar
Keller, R. M., Picot, D. & Wüthrich, K. (1979). Individual assignments of the heme resonances in the 360 MHz 1H-NMR spectra of Cytochrome c-557 from Crithidia oncopelti. Biochim. biophys. Acta 580, 259265.Google Scholar
Keller, R. M., Schejter, A. & Wüthrich, K. (1980). 1H-HMR studies of the coordination geometry at the heme iron and the electronic structure of the heme group in Cytochrome c-552 from Euglena gracilis. Biochim. biophys. Acta 626, 1522.Google Scholar
Keller, R. M. & Wüthrich, K. (1978 a). Assignment of the heme c resonances in the 360 MHz 1H NMR spectra of Cytochrome c. Biochim. biophys. Acta. 533, 195208.CrossRefGoogle ScholarPubMed
Keller, R. M. & Wüthrich, K. (1978 b). Evolutionary change of the heme c electronic structure: Ferricytochrome c-551 from Pseudomonas aeruginosa and horse heart ferricytochrome c. Biochem. biophys. Res. Commun. 83, 11321139.CrossRefGoogle ScholarPubMed
Keller, R. M. & Wüthrich, K. (1981). 1H-NMR studies of structural homologies between the heme environments in horse Cytochrome c and in Cytochrome c-552 from Euglena gracilis. Biochim. biophys. Acta 668, 307320.Google Scholar
Koppenol, W. H. & Margoliash, E. (1982). The assymetric distribution of charges on the surface of horse Cytochrome c. Functional implications. J. biol. Chem. 257, 44264437.CrossRefGoogle Scholar
Korszun, Z. R., Moffat, K., Frank, K. & Cusanovich, M. A. (1982). Extended X-ray absorption fine structure studies of Cytochromes c: Structural aspects of oxidation-reduction. Biochemistry. 21, 22532258.CrossRefGoogle ScholarPubMed
Korszun, Z. R. & Salemme, F. R. (1977). Structure of Cytochrome c-555 of Chlorobium thiosulfatophilum: primitive low-potential Cytochrome c. Proc. natn. Acad. Sci. U.S.A. 74, 52445247.CrossRefGoogle Scholar
Kozlowski, H., Decock-Le-Reverend, B., Delaruelle, J. L., Loucheux, C. & Accian, B. (1983). NMR and CD studies of sulfur chirality center in Pd(II) complexes with S-benzyl-cysteine and glycyl-S-benzyl-L-cysteine. Inorg. chim. Acta. 78, 3135.CrossRefGoogle Scholar
Kraut, J. (1981). Molecular geometry of Cytochrome c and its peroxidase: a model for biological electron transfer. Biochem. Soc. Trans. 9, 197204.Google Scholar
Lemberg, R. & Barrett, J. (1973). Cytochromes. New York: Academic Press.Google Scholar
Marcus, R. A. (1956). On the theory of oxidation-reduction reactions involving electron transfer. J. chem. Phys. 24, 966978.CrossRefGoogle Scholar
Margalit, R. & Schejter, A. (1973). Cytochrome c: a thermodynamic study of the relationships among oxidation state, ion-binding and structural parameters. I. The effects of temperature, pH and electrostatic media on the standard redox potential of cytochrome c. Eur. J. Biochem. 32, 492499.Google Scholar
Marguilis, L. (1970). Origin of Eukaryotic Cells. New Haven: Yale University Press.Google Scholar
Mashiko, T., Reed, C. A., Haller, K. J., Kastner, M. E. & Scheidt, W. R. (1981). Thioether ligation in iron-porphyrin complexes: Models for cytochrome c. J. Am. chem. Soc. 103, 57585767.CrossRefGoogle Scholar
Matsuura, Y., Takano, T. & Dickerson, R. E. (1982). Structure of cytochrome c-551 from Pseudomonas aeruginosa refined at 1·5 Å resolution and comparison of the two redox forms. J. molec. Biol. 156, 389409.CrossRefGoogle Scholar
Meyer, T. E. & Kamen, M. D. (1982). New perspectives on c-type cytochromes. Adv. Protein Chem. 35, 105212.CrossRefGoogle ScholarPubMed
Moore, G. R. (1983). Control of redox properties of cytochrome c by special electrostatic interactions. FEBS Lett. 161, 171175.CrossRefGoogle ScholarPubMed
Moore, G. R., Huang, Z. X., Eley, C. G. S., Barker, H. A., Williams, G., Robinson, M. N. & Williams, R. J. P. (1982). Electron transfer in biology, the function of cytochrome c. Faraday Discuss. chem. Soc. 74, 311329.CrossRefGoogle ScholarPubMed
Moore, G. R. & Williams, R. J. P. (1977). Structural Basis for the variation in redox potential of cytochromes. FEBS Lett. 79, 229232.Google Scholar
Moore, G. R. & Williams, R. J. P. (1980). The solution structures of tuna and horse cytochromes c. Eur. J. Biochem. 103, 533541.CrossRefGoogle ScholarPubMed
Osheroff, N., Borden, D., Koppenol, W. H. & Margoliash, E. (1979). The evolutionary control of cytochrome c function. In cytochrome Oxidase (ed. King, T. E.), pp. 385397. Amsterdam: Elsevier, North Holland Biomedical Press.Google Scholar
Osheroff, N., Borden, D., Koppenol, W. H. & Margoliash, E. (1980). Electrostatic interactions in cytochrome c. The role of interactions between residues 13 and 90 and residues 79 and 97 in stabilizing the heme crevice structure. J. biol. Chem. 255, 16891697.CrossRefGoogle Scholar
Pettigrew, G. W., Aviram, I. & Schejter, A. (1975). Physicochemical properties of two atypical cytochromes c, Crithidia cytochromes c-557 and Euglena cytochrome c-557. Biochem. J. 149, 155167.Google Scholar
Pettigrew, G. W., Bartsch, R. G., Meyer, T. E. & Kamen, M. D. (1978). Redox potentials of the photosynthetic bacterial cytochromes c2 and the structural basis for variability. Biochim. biophys. Acta. 503, 509523.CrossRefGoogle Scholar
Redfield, A. G. & Gupta, R. K. (1971). Pulsed NMR study of the structure of cytochromes c. Cold Spring Harb. Symp. quant. Biol. 36, 541550.Google Scholar
Rieder, R. & Bosshard, H. R. (1980). Comparison of the binding sites on cytochrome c for cytochrome c oxidase, cytochrome bc1 and cytochrome C1. J. biol. Chem. 255, 47324739.Google Scholar
Salemme, F. R. (1977). Structure and Function of cytochromes. A. Rev. Biochem. 46, 299329.CrossRefGoogle ScholarPubMed
Salemme, F. R., Freer, S. T., Xuong, N. H., Alden, R. A. & Kraut, J. (1973). The structure of oxidized cytochrome c2 of Rhodospirillum rubrum. J. biol. Chem., 248, 39103921.Google Scholar
Schwartz, R. M. & Dayhoff, M. O. (1976). cytochromes. In Atlas of Protein Sequence and Structure, vol. 5, Suppl. 2 (ed. Dayhoff, M. O.), pp. 2550. Washington: Natl. Biomed. Res. Found.Google Scholar
Senn, H. (1983). Zusammenhänge zwischen Aminosäuresequenz, Haem-Eisen-Koordinationsgeometrie und funktionellen Eigenschaften in cytochromen c: 1H-NMR Studien. Ph.D. Thesis, Nr. 7314, ETH-Zürich.Google Scholar
Senn, H., Billeter, M. & Wüthrich, K. (1984 a). The spatial structure of the axially bound methionine in solution conformations of horse ferrocytochrome c and Pseudomonas aeruginosa ferrocytochrome c- 551 by 1H-NMR. Eur. Biophys. J. II, 315.Google Scholar
Senn, H., Böhme, H. & Wüthrich, K. (1984 b). Studies of the solution conformation of Spirulina platensis cytochrome c-553 by 1H-nuclear magnetic resonance and circular dichroism. Biochim. biophys. Acta. 789, 311323.Google Scholar
Senn, H., Cusanovich, M. & Wüthrich, K. (1984 c). 1H-NMR assignments for the heme group and electronic structure in Chlorobium thiosulfatophilum cytochrome c-555- Biochim. biophys. Acta 785, 4653.Google Scholar
Senn, H., Eugster, A. & Wüthrich, K. (1983 a). Determination of the coordination geometry at the heme-iron in three cytochromes c from Saccharomyces cerevisiae and from Candida krusei based on individual 1H-NMR assignments for heme c and the axially coordinated amino acids. Biochim. biophys. Acta. 743, 5868.CrossRefGoogle ScholarPubMed
Senn, H., Guerlesquin, F., Bruschi, M. & Wüthrich, K. (1983 b). Coordination of the heme-iron in the low-potential cytochromes c-553 from Desulfovibrio vulgaris and Desulfovibrio desulfuricans. Different chirality of the axially bound methionine in the oxidized and reduced states. Biochim. biophys. Acta. 748, 194204.Google Scholar
Senn, H., Keller, R. M. & Wüthrich, K. (1980). Different chirality of the axial methionine in homologous cytochromes c determined by 1H-NMR and CD spectroscopy. Biochem. biophys. Res. Commun. 92, 13621369.Google Scholar
Senn, H. & Wüthrich, K. (1983 a). Individual 1H-NMR assignments for the heme groups and the axially bound amino acids and determination of the coordination geometry at the heme-iron in a mixture of two isocytochromes c-551 from Rhodopseudomonas gelatinosa. Biochim. biophys. Acta 743, 6981.CrossRefGoogle Scholar
Senn, H. & Wüthrich, K. (1983 b). Conformation of the axially bound ligands of the heme-iron and electronic structure of heme c in the cytochromes c-551 from Pseudomonas mendocina and Pseudomonas stutseri and in cytochrome c2 from Rhodospirillum rubrum. Biochim. biophys. Acta 746, 4860.CrossRefGoogle Scholar
Senn, H. & Wüthrich, K. (1983 c). A new spatial structure for the axial methionine observed in cytochrome c5 from Pseudomonas mendocina. Correlations with the electronic structure of heme c. Biochim. biophys. Acta. 747, 1625.CrossRefGoogle ScholarPubMed
Shulman, R. G., Glarum, S. H. & Karplus, M. (1971). Electronic structure of cyanide complexes of hemes and heme proteins. J. Molec. Biol. 57, 93115.CrossRefGoogle ScholarPubMed
Stellwagen, E. (1978). Haem exposure as the determinate of oxidationreduction potential of haem proteins. Nature, Lond. 275, 7374.CrossRefGoogle ScholarPubMed
Sugimura, Y., Toda, F., Murata, T. & Yakushiji, E. (1968). Studies on algal cytochromes. In Structure and function of cytochromes (ed. Okunuki, K., Sekuzu, I. and Kamen, M. D.), pp. 452458. Baltimore, Maryland: University Park Press.Google Scholar
Sutin, N. (1977). Electron transfer reactions of cytochrome c. Bio-inorganic Chemistry. Adv. Chem. Ser. 16, 156172.Google Scholar
Takano, T. & Dickerson, R. E. (1981 a). Conformation change of cytochrome c. I. Ferrocytochrome c structure refined at 1·5 Å resolution. J. Molec. Biol. 153, 7994.CrossRefGoogle ScholarPubMed
Takano, T. & Dickerson, R. E. (1981 b). Conformation change of cytochrome c. II. Ferricytochrome c refinement at 1·8 Å and comparison with the ferrocytochrome structure. J. Molec. Biol. 153, 95115.CrossRefGoogle ScholarPubMed
Timkovich, R. (1979). cytochromes c. In The Porphyrins, vol. VII (ed. Dolphin, D.), pp. 241294. New York: Academic Press.Google Scholar
Ulrich, E. L., Krogmann, D. W. & Markley, J. L. (1982). Structure and heme environment of Ferrocytochrome c 553 from 1H-NMR studies. J. biol. Chem. 257, 93569364.CrossRefGoogle Scholar
Valentine, I. S., Sheridan, R. P., Alten, L. C. & Kahn, P. C. (1979). Coupling between oxidation state and hydrogen bond conformation in heme proteins. Proc. natn. Acad. Sci. U.S.A. 76, 10091013.CrossRefGoogle ScholarPubMed
Waldmeyer, B., Bechtold, R., Bosshard, H. R. & Poulos, T. L. (1982). Thecytochrome c peroxidase. Cytochrome c electron transfer complex. J. biol. Chem. 257, 60736075.CrossRefGoogle Scholar
Wüthrich, K. (1969). High-resolution proton nuclear magnetic resonance spectroscopy of cytochrome c. Proc. natn. Acad. Sci. U.S.A. 63, 10711078.CrossRefGoogle Scholar
Wüthrich, K. (1970). Structural studies of hemes and hemoproteins by nuclear magnetic resonance spectroscopy. In Structure and Bonding, vol. VIII, pp. 53121 (ed. Hemmerich, P., Jørgensen, C. K., Neilands, J. B., Nyholm, R. S., Reinen, D., Williams, R. J. P.) Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
Wüthrich, K. (1971). High resolution Proton NMR studies of the coordination of the heme iron in cytochrome c. In Probes of Structure and Function of Macromolecules and Membranes, vol. II: Probes of Enzymes and hemoproteins (ed. Chance, B., Yonetani, T. and Mildvan, A. S.) pp. 465486. New York: Academic Press.Google Scholar
Wüthrich, K. (1976). NMR in Biological Research: Peptides and Proteins. Amsterdam: North Holland.Google Scholar
Yagi, T. (1979). Purification and properties of cytochrome c-553, an electron acceptor for formate dehydrogenase of Desulfovibrio vulgaris, miyazaki. Biochim. biophys. Acta. 548, 96105.CrossRefGoogle ScholarPubMed
Yamanaka, T. & Okunuki, K. (1968). Comparative studies on reactivities of cytochrome c with cytochrome oxidases. In Structure and Function of cytochromes (ed. Okunuki, K., Sekutu, I. and Kamen, M. D.), pp. 360403. Baltimore, Maryland: University Park Press.Google Scholar
Yamanaka, T., Fukumori, Y. & Wada, K. (1978). cytochrome c-553 derived from the blue-green algae Spirulina platensis. Plant and Cell Physiol. 19, 117126.Google Scholar