Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T04:38:56.719Z Has data issue: false hasContentIssue false

The active transport of ions in plant cells

Published online by Cambridge University Press:  17 March 2009

E. A. C. MacRobbie
Affiliation:
Botany School, University of Cambridge

Extract

In a recent review of the transport of salts and water across multicellular secretory tissues in animals (Keynes, 1969), a summary was given of the various types of active transport of ions necessary to explain the experimental observations in a very wide range of tissues, and five basic types of ion pump were discussed. The question of whether plants and animals have any common mechanisms for the transport of salts and water was specifically excluded. The original aim of the present review was to survey the types of ion pump found in plant cells and tissues, and to compare these with those found in animals. Its aims narrowed very considerably in writing. It now reviews ion transport processes in giant algal cells, and tries to assess progress towards understanding the mechanisms involved. It indicates the existence of similar ion transports in higher plant cells, but it does not present a complete review of the experimental work on higher plants.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aikman, D. P. & Dainty, J. (1966). Ionic relations of Valonia ventricosa. In Some Contemporary Studies in Marine Science, pp. 3743. Ed. Barnes, H.. London: Allen & Unwin.Google Scholar
Arens, K. (1939). Physiologische Multipolarität der Zelle von Nitella während der Photosynthese. Protoplasma 33, 295300.CrossRefGoogle Scholar
Atkinson, M. R., Eckermann, G., Grant, M. & Robertson, R. N. (1966). Salt accumulation and adenosine triphosphate in carrot xylem tissue. Proc. natn. Acad. Sci. U.S.A. 55, 560564.CrossRefGoogle ScholarPubMed
Atkinson, M. R. & Polya, G. M. (1967). Salt-stimulated adenosine triphosphatases from carrot, beet and Chara australis. Aust. J. biol. Sci. 20, 10691086.CrossRefGoogle Scholar
Barr, C. E. (1965). Na and K fluxes in Nitella clavata. J. gen. Physiol. 49, 181197.CrossRefGoogle ScholarPubMed
Barr, C. E. & Broyer, T. C. (1964). Effect of light on sodium influx, membrane potential and protoplasmic streaming in Nitella. Pl Physiol., Lancaster 39, 4852.CrossRefGoogle ScholarPubMed
Bennett, H. S. (1956). The concept of membrane flow and membrane vesiculation as mechanisms for active transport and ion pumping. J. biophys. biochem. Cytol. 2, 94103.CrossRefGoogle ScholarPubMed
Blount, R. W. (1958). A quantitative analysis of active ion transport in the single-celled alga Halicystis ovalis. Ph.D. thesis, University of California, L.A.Google Scholar
Blount, R. W. & Levedahl, B. H. (1960). Active sodium and chloride transport in the single celled marine alga Halicystis ovalis. Acta physiol. scand. 49, 19.CrossRefGoogle ScholarPubMed
Coster, H. G. L. (1966). Chloride in cells of Chara australis. Aust. J. biol. Sci. 19, 545554.CrossRefGoogle Scholar
Coster, H. G. L. & Hope, A. B. (1968). Ionic relations of Chara australis. XI. Chloride fluxes. Aust. J. biol. Sci. 21, 243254.CrossRefGoogle Scholar
Costerton, J. W. F. & MacRobbie, E. A. c. (1970). Ultrastructure of Nitella translucens in relation to ion transport. J. exp. Bot. 21 (in the Press).CrossRefGoogle Scholar
Cram, W. J. (1968). The effects of ouabain on sodium and potassium fluxes in excised root tissue of carrot. J. exp. Bot. 19, 611616.CrossRefGoogle Scholar
Cram, W. J. (1969). Respiration and energy-dependent movements of chloride at plasmalemma and tonoplast of carrot root cells. Biochim. biophys. Acta 173, 213222.CrossRefGoogle ScholarPubMed
Dodd, W. A., Pitman, M. G. & West, K. R. (1966). Sodium and potassium transport in the marine alga Chaetomorpha darwinii. Aust. J. biol. Sci. 19, 341354.Google Scholar
Dodds, J. J. A. & Ellis, R. J. (1966). Cation stimulated adenosine triphosphatase activity in plant cell walls. Biochem. J. 101, 31 p.Google Scholar
Epstein, E. (1966). Dual pattern of ion absorption by plant cells and by plants. Nature, Lond. 212, 13241327.CrossRefGoogle Scholar
Etherton, B. (1963). Relationship of cell transmembrane electropotential to potassium and sodium accumulation ratios in oat and pea seedlings. Pl. Physiol., Lancaster, 38, 581585.CrossRefGoogle ScholarPubMed
Etherton, B. (1967). Steady state sodium and rubidium effluxes in Pisum sativum roots. Pl. Physiol., Lancaster 42, 685690.CrossRefGoogle ScholarPubMed
Etherton, B. & Higinbotham, N. (1960). Transmembrane potential measurements of cells of higher plants as related to salt uptake. Science, N. Y. 131, 409410.CrossRefGoogle ScholarPubMed
Findlay, G. P., Hope, A. B., Pitman, M. G., Smith, F. A. & Walker, N. A. (1969). Ion fluxes in cells of Chara corallina. Biochim. biophys. Acta 183, 565576.CrossRefGoogle ScholarPubMed
Findlay, G. P., Hope, A. B. & Williams, E. J. (1969). Ionic relations of marine algae. I. Griffithsia: membrane electrical properties. Aust. J. biol. Sci. 22, 11631178.CrossRefGoogle Scholar
Gaffey, C. T. & Mullins, L. J. (1958). Ion fluxes during the action potential in Chara. J. Physiol., Lond. 144, 505524.CrossRefGoogle ScholarPubMed
Gutknecht, J. (1966). Sodium, potassium and chloride transport and membrane potentials in Valonia ventricosa. Biol. Bull. mar. biol. Lab., Woods Hole 130, 331344.CrossRefGoogle Scholar
Gutknecht, J. (1967). Ion fluxes and short-circuit current in internally perfused cells of Valonia ventricosa. J. gen. Physiol. 50, 18211834.CrossRefGoogle ScholarPubMed
Gutknecht, J. & Dainty, J. (1968). Ionic relations of marine algae. Oceanogr. mar. Biol. 6, 163200.Google Scholar
Heber, U. W. & Santarius, K. A. (1965). Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis. Biochem. biophys. Acta 109, 390408.Google ScholarPubMed
Higinbotham, N., Etherton, B. & Foster, R. J. (1964). Effect of external K, NH4, Na, Ca, Mg and H ions on the cell transmembrane electropotential of Avena coleoptile. Pl. Physiol., Lancaster 39, 196203.CrossRefGoogle Scholar
Higinbotham, N., Etherton, B. & Foster, R. J. (1967). Mineral ion contents and cell transmembrane electropotentials of pea and oat seedling tissue. Pl Physiol., Lancaster 42, 3746.CrossRefGoogle ScholarPubMed
Hodges, T. K. (1966). Oligomycin inhibition of ion transport in plant roots. Nature, Lond. 209, 425426.CrossRefGoogle Scholar
Hope, A. B. (1963). Ionic relations of cells of Chara australis. VI. Fluxes of potassium. Aust. J. biol. Sci. 16, 429441.CrossRefGoogle Scholar
Hope, A. B., Simpson, A. & Walker, N. A. (1966). The efflux of chloride from cells of Nitella and Chara. Aust. J. biol. Sci. 19, 355362.CrossRefGoogle Scholar
Hope, A. B. & Walker, N. A. (1960). Ionic relations of cells of Chara australis. III. Vacuolar fluxes of sodium. Aust. J. biol. Sci. 13, 277291.CrossRefGoogle Scholar
Jackman, M. E. & Van Steveninck, R. F. M. (1967). Changes in the endoplasmic reticulum of beetroot slices during ageing. Aust. J. biol. Sci. 20, 10631068.CrossRefGoogle Scholar
Jackson, P. C. & Adams, H. R. (1963). Cation-anion balance during potassium and sodium absorption by barley roots. J. gen. Physiol. 46, 369386.CrossRefGoogle ScholarPubMed
Jacobson, L., Overstreet, R., King, H. M. & Handley, R. A. (1950). A study of potassium absorption by barley roots. Pl. Physiol., Lancaster 25, 639647.CrossRefGoogle ScholarPubMed
Jeschke, W. D. (1967). Die cyclische und die nichtcyclische Photophosphorylierung als Energiequellen der lichtabhängigen Chloridionaufnahme bei Elodea. Planta 73, 161174.CrossRefGoogle ScholarPubMed
Jeschke, W. D. (1968). On the connection between electron transport and ion transport. Abh. dt. Akad. Wiss. Berl. 4a, 127143.Google Scholar
Jeschke, W. D. & Simonis, W. (1967). Effect of CO2 on photophosphorylation in vivo as revealed by the light-dependent Cl uptake in Elodea densa. Z. Naturf. 22B, 873875.CrossRefGoogle Scholar
Jeschke, W. D. & Simonis, W. (1969) Über die Wirkung von CO2 auf die lichtabhängige Cl Aufnahme bei Elodea densa; Regulation zwischen nichtcyclischer und cyclischer Photophosphorylierung. Planta 88, 157171.CrossRefGoogle Scholar
Keck, K. (1964). Culturing and experimental manipulation of Acetabularia. In Methods in Cell Physiology, vol. 1, pp. 189213. Ed. Prescott, D. M.. New York: Academic Press.Google Scholar
Kedem, O. (1961). Criteria for active transport. In Membrane Transport and Metabolism, pp. 8793. Ed. Kleinzeller, A. and Kotyk, A.. London and New York: Academic Press.Google Scholar
Keynes, R. D. (1969). From frog skin to sheep rumen: a survey of transport of salts and water across multicellular structures. Q. Rev. Biophys. 2, 177281.CrossRefGoogle ScholarPubMed
Kishimoto, U. & Tazawa, M. (1965a). Ionic composition of the cytoplasm of Nitetla flexilis. Pl. Cell Physiol. Tokyo 6, 507518.Google Scholar
Kishimoto, U. & Tazawa, M. (1965b). Ionic composition and electric response of Lamprothamnium succinctum. Pl. Cell Physiol. Tokyo 6, 529536.Google Scholar
Kitasato, H. (1968). The influence of H+ on the membrane potential and ion fluxes of Nitella. J. gen. Physiol. 52, 6087.CrossRefGoogle ScholarPubMed
Kuipper, P. J. C. (1968a). Lipids in grape roots in relation to chloride transport. Pl. Physiol., Lancaster 43, 13671371.CrossRefGoogle Scholar
Kuipper, P. J. C. (1968b). Ion transport characteristics of grape root lipids in relation to chloride transport. Pl. Physiol., Lancaster 43, 13721374.CrossRefGoogle Scholar
Larkum, A. W. D. (1968). Ionic relations of chloroplasts in vivo. Nature, Lond. 218, 447449.CrossRefGoogle Scholar
Latzko, E. & Gibbs, M. (1969). Levels of photosynthetic intermediates in isolated spinach chloroplasts. Pl. Physiol., Lancaster 44, 396402.CrossRefGoogle ScholarPubMed
Lundegårdt, H. (1954). Anion respiration. The experimental basis of a theory of absorption, transport and exudation of electrolytes by living cells and tissues. Symp. Soc. exp. Biol. 8, 262296.Google Scholar
Lundegårdh, H. (1960). Salts and respiration. Nature, Lond. 185, 7074.CrossRefGoogle ScholarPubMed
Lüttge, U., Pallaghy, C. K. & Osmond, C. B. (1970). Coupling of ion transport in green cells of Atriplex spongiosa leaves to energy sources in the light and in the dark. J. Membrane Biol. 2, 1730.CrossRefGoogle Scholar
MacRobbie, E. A. C. (1962). Ionic relations of Nitella translucens. J. gen. Physiol. 45, 861878.CrossRefGoogle ScholarPubMed
MacRobbie, E. A. C. (1964). Factors affecting the fluxes of potassium and chloride ions in Nitella translucens. J. gen. Physiol 47, 859877.CrossRefGoogle ScholarPubMed
Macrobbie, E. A. C. (1965). The nature of the coupling between light energy and active ion transport in Nitella translucens. Biochem. Biophys. Acta 94, 6473.Google ScholarPubMed
MacRobbie, E. A. C. (1966a). Metabolic effects on ion fluxes in Nitella translucens I. Active influxes. Aust. J. biol. Sci. 19, 363370.CrossRefGoogle Scholar
MacRobbie, E. A. C. (1966b). Metabolic effects on ion fluxes in Nitella translucens. II. Tonoplast fluxes. Aust. J. biol. Sci. 19, 371383.CrossRefGoogle Scholar
MacRobbie, E. A. C. (1969). Ion fluxes to the vacuole of Nitella translucens. J. exp. Bot. 20, 236256.CrossRefGoogle Scholar
MacRobbie, E. A. C. (1970). Quantized fluxes of chloride to the vacuole of Nitella translucens. J. exp. Bot. 21, 335344.CrossRefGoogle Scholar
MacRobbie, E. A. C. & Dainty, J. (1958). Ion transport in Nitellopsis obtusa. J. gen. Physiol. 42, 335353.CrossRefGoogle ScholarPubMed
Mengel, K. (1963). Der Einfluss von ATP-Zugaben und weiteren Stoffwechselagenzien auf die Rb-Aufnahme abgeschnittener Gerstenwurzeln Physiol. Plant. 16, 767776.CrossRefGoogle Scholar
Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, Lond. 191, 144148.CrossRefGoogle ScholarPubMed
Mitchell, P. (1962). Molecule, group and electron translocation through natural membranes. Biochem. Soc. Symp. 22, 142169.Google Scholar
Mitchell, P. (1966). Chemi-osmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41, 445602.CrossRefGoogle Scholar
Nobel, P. S. (1969). Light-dependent potassium uptake by Pisum sativum leaf fragments. Pl. Cell Physiol. Tokyo 10, 597605.Google Scholar
Pitman, M. G. & Saddler, H. D. W. (1967). Active sodium and potassium transport in cells of barley roots. Proc. natn. Acad. Sci. U.S.A. 57, 4449.CrossRefGoogle ScholarPubMed
Poole, R. J. (1966). The influence of the intracellular potential on potassium uptake by beetroot tissue. J. gen. Physiol. 49, 551563.CrossRefGoogle ScholarPubMed
Polya, G. M. (1968). Inhibition of protein synthesis and cation uptake in beetroot tissue by cycloheximide and cryptopleurine. Aust. J. biol. Sci. 21, 11071118.CrossRefGoogle Scholar
Polya, G. M. & Atkinson, M. R. (1969). Evidence for a direct involvement of electron transport in the high affinity ion accumulation system of aged beet parenchyma. Aust. J. biol. Sci. 22, 573584.CrossRefGoogle Scholar
Raven, J. A. (1967a). Ion transport in Hydrodictyon africanum. J. gen. Physiol. 50, 16071625.CrossRefGoogle ScholarPubMed
Raven, J. A. (1967b). Light-stimulation of active ion transport in Hydrodictyon africanum. J. gen. Physiol. 50, 16271640.CrossRefGoogle Scholar
Raven, J. A. (1968a). The mechanism of photosynthesic use of bicarbonate by Hydrodictyon africanum. J. exp. Bot. 19, 193206.CrossRefGoogle Scholar
Raven, J. A. (1968b). The linkage of light-stimulated Cl influx to K and Na influxes in Hydrodictyon africanum. J. exp. Bot. 19, 233253.CrossRefGoogle Scholar
Raven, J. A. (1968c). The action of phlorizin on photosynthesis and lightstimulated ion transport in Hydrodictyon africanum. J. exp. Bot. 19, 712723.CrossRefGoogle Scholar
Raven, J. A. (1968d). Photosynthesis and light-stimulated ion transport in Hydrodictyon africanum. Abh. dt. Akad. Wiss. Berl. 4a 145151.Google Scholar
Raven, J. A. (1969a). Action spectra for photosynthesis and light-stimulated ion transport processes in Hydrodictyon africanum. New Phytol. 68, 4562.CrossRefGoogle Scholar
Raven, J. A. (1969b). Effects of inhibitors on photosynthesis and the active influxes of K and Cl in Hydrodictyon africanum. New Phytol. 68, 10891113.CrossRefGoogle Scholar
Raven, J. A. (1970). Exogenous inorganic carbon sources in plant photosynthesis. Biol. Rev. 45, 167221.CrossRefGoogle Scholar
Raven, J. A., MacRobbie, E. A. C. & Neumann, J. (1969). The effect of Dio-9 on photosynthesis and ion transport in Nitella, Tolypella, and Hydrodictyon. J. exp. Bot. 20, 221235.CrossRefGoogle Scholar
Robertson, R. N. (1960). Ion transport and respiration. Biol. Rev. 35, 231264.CrossRefGoogle Scholar
Robertson, R. N. (1968). Protons, Electrons, Phosphorylation and Active Transport. Cambridge University Press.Google Scholar
Robinson, J. B. (1969a). Sulphate influx in Characean cells. I. General characteristics. J. exp. Bot. 20, 201211.CrossRefGoogle Scholar
Robinson, J. B. (1969b). Sulphate influx in Characean cells. II. Links with light and metabolism in Chara australis. J. exp. Bot. 20, 212220.CrossRefGoogle Scholar
Robinson, J. M. & Stocking, C. R. (1968). Oxygen evolution and the permeability of the outer envelop e of isolated whole chloroplasts. Pl. Physiol., Lancaster 43, 15971604.CrossRefGoogle Scholar
Saddler, H. D. W. (1970a). The ionic relations of Acetabularia mediterranea. J. exp. Bot. 21, 345359.CrossRefGoogle Scholar
Saddler, H. D. W. (1970b). Fluxes of sodium and potassium in Acetabularia mediterranea. J. exp. Bot. 21 (in the Press).CrossRefGoogle Scholar
Saddler, H. D. W. (1970c). The membrane potential of Acetabularia mediterranea. J. gen. Physiol. 55, 802821.CrossRefGoogle ScholarPubMed
Smith, F. A. (1965). Links between solute uptake and metabolism in Characean cells. Ph.D. thesis, University of Cambridge.Google Scholar
Smith, F. A. (1966). Active phosphate uptake by Nitella translucens. Biochim. biophys. Acta 126, 9499.CrossRefGoogle ScholarPubMed
Smith, F. A. (1967a). Rates of photosynthesis in Characean cells. I. Photosynthetic 14CO2 fixation by Nitella translucens. J. exp. Bot. 18, 509517.CrossRefGoogle Scholar
Smith, F. A. (1967b). The control of Na uptake into Nitella translucens. J. exp. Bot. 18, 716731.CrossRefGoogle Scholar
Smith, F. A. (1968a). Rates of photosynthesis in Characean cells. II. Photosynthetic 14CO2 fixation and 14C-bicarbonate uptake by Characean cells. J. exp. Bot. 19, 207217.CrossRefGoogle Scholar
Smith, F. A. (1968b). Metabolic effects on ion fluxes in Tolypella intricata. J. exp. Bot. 19, 442451.CrossRefGoogle Scholar
Smith, F. A. (1970). The mechanism of chloride transport in Characean cells. New Phytol. (in the Press).CrossRefGoogle Scholar
Smith, F. A. & West, K. R. (1969). A comparison of the effects of metabolic inhibitors on chloride uptake and photosynthesis in Chara corallina. Aust. J. biol. Sci. 22, 351363.CrossRefGoogle Scholar
Spanswick, R. M. & Williams, E. J. (1964). Electric potentials and Na, K, and Cl concentrations in the vacuole and cytoplasm of Nitella translucens. J. exp. Bot. 15, 193200.CrossRefGoogle Scholar
Spear, D. G., Barr, J. K. & Barr, C. E. (1969). Localization of hydrogen ion and chloride ion fluxes in Nitella. J. gen. Physiol. 54, 397414.CrossRefGoogle ScholarPubMed
Stocking, C. R. & Larson, S. (1969). A chloroplast cytoplasmic shuttle and the reduction of extraplastid NAD. Biochem. biophys. Res. Commun. 37, 278282.CrossRefGoogle ScholarPubMed
Sutcliffe, J. F. (1962). Mineral Salts Absorption in Plants. Oxford, London, New York, Paris: Pergamon Press.CrossRefGoogle Scholar
Tazawa, M. (1961). Weitere Untersuchungen zur Osmoregulation der Nitella-Zelle. Protoplasma 53, 227258.CrossRefGoogle Scholar
Tazawa, M. & Nagai, R. (1966). Studies on osmoregulation of Nitella internode with modified cell saps. Z. Pflanzenphysiol. 54, 333344.Google Scholar
Torii, & Laties, G. G. (1966). Dual mechanisms of ion uptake in relation to vacuolation in corn roots. Pl. Physiol., Lancaster 41, 863870.CrossRefGoogle ScholarPubMed
Ussing, H. H. (1949). The distinction by means of tracers between active transport and diffusion. Acta physiol. scand. 19, 4356.CrossRefGoogle Scholar
Vorobiev, L. N. (1967). Potassium ion activity in the cytoplasm and the vacuole of cells of Chara and Griffithsia. Nature, Lond. 216, 13251327.CrossRefGoogle ScholarPubMed
Walker, N. A. & Hope, A. B. (1969). Membrane fluxes and electric conductance in Characean cells. Aust. J. biol. Sci. 22, 11791195.Google Scholar
Welch, R. M. & Epstein, E. (1968). The dual mechanisms of alkali cation absorption by plant cells: their parallel operation across the plasmalemma. Proc. natn. Acad. Sci. U.S.A. 61, 447453.CrossRefGoogle ScholarPubMed