Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-22T13:33:45.607Z Has data issue: false hasContentIssue false

Physical aspects of tissue evagination and biological form

Published online by Cambridge University Press:  17 March 2009

Alfred Gierer
Affiliation:
Max-Planck-Institut für Virusforschung, Spemannstr. 35, 74 Tübingen, W. Germany

Extract

The form of multicellular animals and their organs is mainly defined by the curvature of cell layers. They are boundaries for solid tissues; and some organs and organisms consist mainly of distinct cell layers (Fig. I a). The form of adult organisms results from a complex interplay of tissue evagination, growth patterns, production of and interaction with extra-cellular material, and other effects; but the rudiments and basic features of the forms produced can often be traced back to processes of evagination or invagination of nearly flat cell sheets at defined locations in the course of embryogenesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Campbell, R. D. (1967). Tissue dynamics of steady state growth in Hydra littoralis. J. Morph. 121, 1928.CrossRefGoogle ScholarPubMed
Child, C. M. (1941). Pattern and Problems in Development. University of Chicago Press.CrossRefGoogle Scholar
Clarkson, S. G. & Wolpert, L. (1967). Bud morphogenesis in Hydra. Nature, Lond. 214, 780–3.CrossRefGoogle ScholarPubMed
Diehl, F. A. (1973). In Biology of Hydra (ed. Burnett, A. L.), pp. 109–41. New York: Academic Press.CrossRefGoogle Scholar
Diehl, F. A. & Burnett, A. L. (1965). The role of interstitial cells in the maintenance of hydra. J. exp. Zool. 158, 299317.CrossRefGoogle ScholarPubMed
Flügge, W. (1962). Statik und Dynamik der Schalen. Berlin: Springer-Verlag. (See equation (130), p. 167.)CrossRefGoogle Scholar
Gierer, A. (1977). Biological features and physical concepts of pattern formation exemplified by hydra. Curr. Tops Devl Biol. II, 1759.CrossRefGoogle Scholar
Gierer, A.Berking, S.Bode, H.David, C. N.Flick, K.Hansmann, G.Schaller, H. & Trenkner, E. (1972). Regeneration of hydra from reaggregated cells. Nature, Lond. 239, 98.Google ScholarPubMed
Gierer, A. & Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik (continued as “Biological Cybernetics”) 12, 30–9.CrossRefGoogle ScholarPubMed
Gierer, A. & Meinhardt, H. (1974). Biological pattern formation involving lateral inhibition. Lect. Math. Life Sci. 7, 163–82.Google Scholar
Goel, N.Campbell, R. D.Gordon, R.Rosen, R.Martinez, H. & Ycas, M. (1970). Self-sorting of isotropic cells. J. theor. Biol. 28, 423–68.CrossRefGoogle ScholarPubMed
Goel, N. & Leith, A. G. (1970). Self-sorting of anisotropic cells. J. theor. Biol. 28, 469–82.CrossRefGoogle ScholarPubMed
Gustafson, J. & Wolpert, L. (1963). The cellular basis of morphogenesis and sea urchin development. Int. Rev. Cytol. 15, 139214.CrossRefGoogle ScholarPubMed
Hartline, H. K.Wagner, H. G. & Ratliff, F. (1956). Inhibition in the eye of limulus. J. gen. Physiol. 39, 651–73.CrossRefGoogle ScholarPubMed
Hendrix, R. W. & Zwaan, J. (1975). The matrix of the optic vesiclepresumptive lens interface during induction of the lens in the chick embryo. J. Embryol. exp. Morph. 33, 1023–49.Google Scholar
Hertwig, R. (1938). Lehrbuch der Zoologie. Jena.Google Scholar
Kirschfeld, K. & Reichardt, W. (1964). Verarbeitung stationärer optischer Nachrichten im Komplexauge des Limulus. Kybernetik (continued as “Biological Cybernetics”) 2, 4361.CrossRefGoogle Scholar
Klingbeil, E. (1966). Tensorrechnung für Ingenieure. B. I. Hochschultaschenbücher 197. Mannheim: Hochschultaschenbücherverlag. (See equation (6.78), p. 170.)Google Scholar
Korschelt, E. & Heider, K. (1936). Vergleichende Entwicklungsgeschichte der Tiere. Jena.Google Scholar
Lazarides, E. & Weber, K. (1974) Actin antibody. The specific visualization of actin filaments in non-muscle cells. Proc. natn. Acad. Sci. U.S.A. 71, 2268–72.CrossRefGoogle ScholarPubMed
Loewenstein, W. E. & Kanno, Y. (1964). Studies on an epithelial cell junction. J. Cell. Biol. 22, 565–8.CrossRefGoogle Scholar
Meinhardt, H. (1976). Morphogenesis of lines and nets. Differentiation 6, 117–23.CrossRefGoogle ScholarPubMed
Meinhardt, H. (1977). A model of pattern formation in insect embryogenesis. J. Cell. Sci. 23, 117–39.CrossRefGoogle Scholar
Meinhardt, H. & Gierer, A. (1974). Applications of a theory of biological pattern formation based on lateral inhibition. J. Cell. Sci. 15, 321–46.CrossRefGoogle ScholarPubMed
Moscona, A. (1961). Rotation-mediated histogenetic aggregation of dissociated cells. Expl Cell Res. 22, 455–75.CrossRefGoogle ScholarPubMed
Muthukkaruppan, V. (1965). Inductive tissue interaction in the development of the mouse lens in vitro. J. exp. Zool. 159, 269–88.CrossRefGoogle ScholarPubMed
Plate, L. (1922). Ailgemeine Zoologie und Abstammungslehre. Jena.Google Scholar
Prigonine, I. & Nicolis, G. (1971). Biological order, structure and instabilities. Q. Rev. Biophys. 4, 107–48.CrossRefGoogle Scholar
Schechtman, A. M. (1942). The mechanism of amphibian gastrulation. Univ. Caif Pubis Zool. 51.Google Scholar
Spooner, B. S. (1975). Microfilarnents, microtubules, and extracellular materials in morphogenesis. Bioscience 25, 440–51.CrossRefGoogle Scholar
Spooner, B. S. & Wessels, N. K. (1970). Effects of cytochalasin B upon microfilaments involved in morphogenesis of salivary epithelium. Proc. natn. Acad. Sci. U.S.A. 66, 360–4.CrossRefGoogle ScholarPubMed
Steinberg, M. S. (1963). Reconstruction of tissues by dissociated cells. Science, N.Y. 141, 401–8.CrossRefGoogle ScholarPubMed
Summerbell, D., Lewis, J. H. & Wolpert, L. (1972). Positional information in chick limb morphogenesis. Nature, Lond. 244, 492–6.CrossRefGoogle Scholar
ThompsonD'arcy, W. D'arcy, W. (1952). On Growth and Form. Cambridge University Press.Google Scholar
Turing, A. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. 237, 3272.Google Scholar
Weber, K.Pollack, R. & Bibring, T. (1975). Antibody against tubulin: The specific visualization of cytoplasmic microtubules in tissue culture cells. Proc. natn. Acad. Sci. U.S.A. 72, 459–63.CrossRefGoogle ScholarPubMed
Webster, G. & Wolpert, L. (1966). Studies on pattern regulation in hydra. J. Embryol. exp. Morph. 16, 91104.Google ScholarPubMed
Weimer, B. R. (1928). Physiological gradients in Hydra: I. Physiol. Zool. I, 183230.CrossRefGoogle Scholar
Weiss, P. & Moscona, A. (1958). Type-specific morphogenesis of cartilages from dissociated limb and scleral mesenchyme in vitro. J. Embryol. exp. Morph. 6, 288.Google ScholarPubMed
Mcwilliams, H. (1978). To be published.Google Scholar
Wolpert, L. (1971). Positional information and pattern formation. Curr. Tops Devi Biol. 6, 183224.CrossRefGoogle ScholarPubMed