Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T11:39:49.440Z Has data issue: false hasContentIssue false

System design and calibration of SITARA—a global 21 cm short spacing interferometer prototype

Published online by Cambridge University Press:  21 April 2022

Jishnu N. Thekkeppattu*
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia Raman Research Institute, C V Raman Avenue, Sadashivanagar, Bengaluru 560080, India
Benjamin McKinley
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Bentley, WA 6102, Australia
Cathryn M. Trott
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Bentley, WA 6102, Australia
Jake Jones
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
Daniel C. X. Ung
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
*
Corresponding author: Jishnu N. Thekkeppattu, email: j.thekkeppattu@postgrad.curtin.edu.au.

Abstract

Global 21-cm experiments require exquisitely precise calibration of the measurement systems in order to separate the weak 21-cm signal from Galactic and extragalactic foregrounds as well as instrumental systematics. Hitherto, experiments aiming to make this measurement have concentrated on measuring this signal using the single element approach. However, an alternative approach based on interferometers with short baselines is expected to alleviate some of the difficulties associated with a single element approach such as precision modelling of the receiver noise spectrum. Short spacing Interferometer Telescope probing cosmic dAwn and epoch of ReionisAtion (SITARA) is a short spacing interferometer deployed at the Murchison Radio-astronomy Observatory (MRO). It is intended to be a prototype or a test-bed to gain a better understanding of interferometry at short baselines, and develop tools to perform observations and data calibration. In this paper, we provide a description of the SITARA system and its deployment at the MRO, and discuss strategies developed to calibrate SITARA. We touch upon certain systematics seen in SITARA data and their modelling. We find that SITARA has sensitivity to all sky signals as well as non-negligible noise coupling between the antennas. It is seen that the coupled receiver noise has a spectral shape that broadly matches the theoretical calculations reported in prior works. We also find that when appropriately modified antenna radiation patterns taking into account the effects of mutual coupling are used, the measured data are well modelled by the standard visibility equation.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astropy, Collaboration, et al. 2013, A&A, 558, A33CrossRefGoogle Scholar
Astropy Collaboration, , et al. 2018, AJ, 156, 123Google Scholar
Born, M., & Wolf, E. 1959, Principles of Optics Electromagnetic Theory of Propagation, Interference and Diffraction of LightGoogle Scholar
Bowman, J. D., Rogers, A. E. E., Monsalve, R. A., Mozdzen, T. J., & Mahesh, N. 2018, Natur, 555, 67 EPCrossRefGoogle Scholar
Chokshi, A., b. Line, J. L., & McKinley, B. 2020, JOSS, 5, 2629CrossRefGoogle Scholar
Clark, B. G. 1999, in Astronomical Society of the Pacific Conference Series, Vol. 180, Synthesis Imaging in Radio Astronomy II, ed. G. B. Taylor, C. L. Carilli, & R. A. Perley, 1Google Scholar
DeBoer, D. R., et al. 2017, PASP, 129, 045001 Google Scholar
de Oliveira-Costa, A., et al. 2008, MNRAS, 388, 247CrossRefGoogle Scholar
Field, G. B. 1958, Proc. IRE, 46, 240CrossRefGoogle Scholar
Górski, K. M., et al. 2005, APJ, 622, 759CrossRefGoogle Scholar
Hallinan, G., et al. 2015, in American Astronomical Society Meeting Abstracts, Vol. 225, American Astronomical Society Meeting Abstracts #225, 328.01Google Scholar
Hamaker, J. P., Bregman, J. D., & Sault, R. J. 1996, A&AS, 117, 137Google ScholarPubMed
Harris, C. R., et al. 2020, Natur, 585, 357Google Scholar
Hickish, J., et al. 2016, JAI, 05, 1641001 Google Scholar
Hitney, H., Richter, J., Pappert, R., Anderson, K., & Baumgartner, G. 1985, Proc. IEEE, 73, 265 CrossRefGoogle Scholar
Hunter, J. D. 2007, CSE, 9, 90 CrossRefGoogle Scholar
Jessop, G. R. 1983, VHF/UHF Manual (4th edn.; Radio Society of Great Britain)Google Scholar
Mahesh, N., Subrahmanyan, R., Udaya Shankar, N., & Raghunathan, A. 2015, IEEE TAP, 63, 4835 CrossRefGoogle Scholar
McKinley, B., et al. 2020, MNRAS, 499, 52 Google Scholar
Mertens, F. G., et al. 2020, MNRAS, 493, 1662 Google Scholar
Mozdzen, T. J., Mahesh, N., Monsalve, R. A., Rogers, A. E. E., & Bowman, J. D. 2018, MNRAS, 483, 4411 CrossRefGoogle Scholar
Nambissan, T., J., et al. 2021, EA, doi: 10.1007/s10686-020-09697-2 CrossRefGoogle Scholar
Ninni, P. D., et al. 2020, in 2020 14th European Conference on Antennas and Propagation (EuCAP), 1–5Google Scholar
Offringa, A. R., et al. 2010, MNRAS, 405, 155Google Scholar
Offringa, A. R., et al. 2015, PASA, 32, e008Google Scholar
Paciga, G., et al. 2011, MNRAS, 413, 1174 CrossRefGoogle Scholar
Padin, S., et al. 2001, ApJ, 549, L1 CrossRefGoogle Scholar
Parsons, A. 2016, AIPY: Astronomical Interferometry in PYthon, ascl:1609.012Google Scholar
Patra, N., Subrahmanyan, R., Sethi, S., Shankar, N. U., & Raghunathan, A. 2015, ApJ, 801, 138 CrossRefGoogle Scholar
Peterson, J. B., Pen, U.-L., & Wu, X.-P. 2004, MPLA, 19, 1001CrossRefGoogle Scholar
Philip, L., et al. 2019, JAI, 8, 1950004Google Scholar
Presley, M. E., Liu, A., & Parsons, A. R. 2015, ApJ, 809, 18 CrossRefGoogle Scholar
Price, D. C. 2016, PyGSM: Python Interface to the Global Sky Model, ascl:1603.013Google Scholar
Price, D. C., et al. 2018, MNRAS , sty1244Google Scholar
Pritchard, J. R., & Loeb, A. 2010, PhyRvD, 82, 023006 CrossRefGoogle Scholar
Raghunathan, A., Patra, N., Shankar, N. U., Ekers, R. D., & Subrahmanyan, R. 2011, in 2011 XXXth URSI General Assembly and Scientific Symposium, 1–1Google Scholar
Rao, M. S., Subrahmanyan, R., Shankar, N. U., & Chluba, J. 2016, AJ, 153, 26 CrossRefGoogle Scholar
Reeve, W. D. 2017, MWA Antenna Description as Supplied by Reeve, Tech. rep., Reeve ObservatoryGoogle Scholar
Rhodes, B. C. 2011, PyEphem: Astronomical Ephemeris for Python, ascl:1112.014Google Scholar
Rogers, A. E. E., Pratap, P., Kratzenberg, E., & Diaz, M. A. 2004, RS, 39, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2003RS003016 CrossRefGoogle Scholar
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in Astronomical Society of the Pacific Conference Series, Vol. 77, Astronomical Data Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes, 433Google Scholar
Shaver, P. A., Windhorst, R. A., Madau, P., & de Bruyn, A. G. 1999, A&A, 345, 380Google Scholar
Singh, S., Subrahmanyan, R., Shankar, N. U., & Raghunathan, A. 2015, ApJ, 815, 88 CrossRefGoogle Scholar
Singh, S., et al. 2018, ExA, 45, 269CrossRefGoogle Scholar
Singh, S., et al. 2017, ApJ , 845, L12 CrossRefGoogle Scholar
Smirnov, O. M. 2011, A&A, 527, A106CrossRefGoogle Scholar
Sokolowski, M., et al. 2015, PASA, 32, 4 Google Scholar
Sokolowski, M., Wayth, R. B., & Lewis, M. 2015, in 2015 IEEE Global Electromagnetic Compatibility Conference (GEMCCON), 1–6Google Scholar
Sokolowski, M., et al. 2017, PASA, 34, e062Google Scholar
Sutinjo, A. T., McKinley, B., Belostotski, L., Ung, D. C. X., & Nambissan, T., J. 2020, URSI RSL, 2, doi: 10.46620/20-0017CrossRefGoogle Scholar
Swarup, G., et al. 1991, CSci, 60, 95CrossRefGoogle Scholar
The HERA Collaboration, et al. 2021, arXiv e-prints, arXiv:2108.02263Google Scholar
Tingay, S. J., Sokolowski, M., Wayth, R., & Ung, D. 2020, PASA, 37, e039 CrossRefGoogle Scholar
Tingay, S. J., et al. 2013, PASA, 30, e007Google Scholar
Trott, C. M., et al. 2020, MNRAS, 493, 4711 Google Scholar
Turner, W. 2016, SKA-TEL-SKO-0000008, SKA Phase 1 System Requirements Specification, Tech. rep., SKA OrganisationGoogle Scholar
van Es, A. J. J., et al. 2020, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 11445, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 1144589Google Scholar
van Haarlem, M. P., et al. 2013, A&A, 556, A2Google Scholar
Varshalovich, D. A., & Khersonskii, V. K. 1977, SvAL, 3, 155Google Scholar
Vedantham, H. K., et al. 2015, MNRAS, 450, 2291 Google Scholar
Venumadhav, T., Chang, T.-C., Doré, O., & Hirata, C. M. 2016, ApJ, 826, 116 CrossRefGoogle Scholar
Virtanen, P., et al. 2020, NM, 17, 261Google Scholar
Watson, R. A., et al. 2003, MNRAS, 341, 1057 Google Scholar
Wayth, R., et al. 2017, PASA, 34, e034 Google Scholar
Wouthuysen, S. A. 1952, AJ, 57, 31CrossRefGoogle Scholar
Zheng, H., et al. 2017, MNRAS, 464, 3486Google Scholar
Zonca, A., et al. 2019, JOSS, 4, 1298CrossRefGoogle Scholar