Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-20T07:35:15.021Z Has data issue: false hasContentIssue false

The Southern 2MASS Active Galactic Nuclei Survey: Spectroscopic Follow-up with Six Degree Field

Published online by Cambridge University Press:  02 January 2013

Frank J. Masci*
Affiliation:
Infrared Processing and Analysis Center, Caltech 100–22, Pasadena, CA 91125, USA
Roc M. Cutri
Affiliation:
Infrared Processing and Analysis Center, Caltech 100–22, Pasadena, CA 91125, USA
Paul J. Francis
Affiliation:
Australian National University, ACT 0200, Australia
Brant O. Nelson
Affiliation:
Infrared Processing and Analysis Center, Caltech 100–22, Pasadena, CA 91125, USA
John P. Huchra
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
D. Heath Jones
Affiliation:
Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710, Australia
Matthew Colless
Affiliation:
Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710, Australia
Will Saunders
Affiliation:
Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710, Australia
*
ECorresponding author. Email: fmasci@caltech.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Two Micron All-Sky Survey (2MASS) has provided a uniform photometric catalog to search for previously unknown red active galactic nuclei (AGN) and Quasi-Stellar Objects (QSOs).We have extended the search to the southern equatorial sky by obtaining spectra for 1182 AGN candidates using the six degree field (6dF) multifibre spectrograph on the UK Schmidt Telescope. These were scheduled as auxiliary targets for the 6dF Galaxy Redshift Survey. The candidates were selected using a single color cut of J – Ks > 2 to Ks ≲ 15.5 and a galactic latitude of lbl > 30°. 432 spectra were of sufficient quality to enable a reliable classification. 116 sources (∼27%) were securely classified as type I AGN, 20 as probable type I AGN, and 57 as probable type II AGN. Most of them span the redshift range 0.05 < z < 0.5 and only 8 (∼6%) were previously identified as AGN or QSOs. Our selection leads to a significantly higher AGN identification rate amongst local galaxies (>20%) than in any previous (mostly blue-selected) galaxy survey. A small fraction of the type I AGN could have their optical colors reddened by optically thin dust with AV < 2 mag relative to optically selected QSOs. A handful show evidence of excess far-infrared (IR) emission. The equivalent width (EW) and color distributions of the type I and II AGN are consistent with AGN unified models. In particular, the EW of the [Oiii] emission line weakly correlates with optical–near-IR color in each class of AGN, suggesting anisotropic obscuration of the AGN continuum. Overall, the optical properties of the 2MASS red AGN are not dramatically different from those of optically-selected QSOs. Our near-IR selection appears to detect the most near-IR luminous QSOs in the local universe to z≃0.6 and provides incentive to extend the search to deeper near-IR surveys.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2010

References

Baldwin, J.A., Phillips, M.M. & Terlevich, R., 1981, PASP, 93, 5CrossRefGoogle Scholar
Barkhouse, W.A. & Hall, P.B., 2001, AJ, 121, 2843CrossRefGoogle Scholar
Benn, C.R., Vigotti, M., Carballo, R., Gonzalez-Serrano, J.I. & Sánchez, S.F., 1998, MNRAS, 295, 451Google Scholar
Blair, M. & Gilmore, G., 1982, PASP, 94, 742CrossRefGoogle Scholar
Brown, M.J.I. et al. , 2006, ApJ, 638, 88Google Scholar
Colless, M. et al. , 2001, MNRAS, 328, 1039Google Scholar
Croom, S.M., Warren, S.J. & Glazebrook, K., 2001, MNRAS, 328, 150CrossRefGoogle Scholar
Cutri, R.M., Nelson, B.O., Francis, P.J. & Smith, P.S., 2002, in Proc. ASP Conf. 284, Eds. Green, R.F., Khachikian, E. Ye. & Sanders, D.B., 127Google Scholar
Desroches, L.-B. & Ho, L., 2009, ApJ, 690, 267Google Scholar
Donley, J.L., Rieke, G.H., Pérez-González, P.G. & Barro, G., 2008, ApJ, 687, 111CrossRefGoogle Scholar
Elvis, M., Wilkes, B.J., McDowell, J.C., Green, R.F., Bechtold, J., Willner, S.P., Oey, M.S., Polomski, E. & Cutri, R., 1994, ApJs, 95, 1Google Scholar
Francis, P.J., Whiting, M.T. & Webster, R.L., 2000, PASA, 17, 56CrossRefGoogle Scholar
Francis, P.J., Nelson, B.O. & Cutri, R.M., 2004, AJ, 127, 646Google Scholar
Fraquelli, H.A. & Storchi-Bergmann, T., 2004, in Proc. IAU Symp. 222, Eds. Storchi-Bergmann, T., Ho, L.C. & Schmitt, H.R. (Cambridge, UK: Cambridge University Press), 319Google Scholar
Fukugita, M., Shimasaku, K. & Ichikawa, T., 1995, PASP, 107, 945Google Scholar
Georgakakis, A., Clements, D.L., Bendo, G., Rowan-Robinson, M., Nandra, K. & Brotherton, M.S., 2009, MNRAS, 394, 533Google Scholar
Glikman, E., Gregg, M.D., Lacy, M., Helfand, D.J., Becker, R. H. & White, R.L., 2004, ApJ, 607, 60Google Scholar
Glikman, E., Helfand, D.J., White, R.L. & Becker, R.H., 2007, ApJ, 667, 673Google Scholar
Gregg, M.D., Lacy, M., White, R.L., Glikman, E., Helfand, D., Becker, R.H. & Brotherton, M.S., 2002, ApJ, 564, 133CrossRefGoogle Scholar
Hambly, N.C. et al. , 2001a, MNRAS, 326, 1279CrossRefGoogle Scholar
Hambly, N.C. et al. , 2001b, MNRAS, 326, 1295Google Scholar
Hao, L. & Strauss, M.A., 2004, Carnegie Observatories Astro-physics Series, Vol. 1., Coevolution of Black Holes and Galaxies (Cambridge, UK: Cambridge University Press) 23Google Scholar
Hewett, P.C., Foltz, C.B. & Chaffee, F.H., 1995, AJ, 109, 1498Google Scholar
Ho, L.C., Filippenko, A.V. & Sargent, W.L.W., 1997, ApJs, 112, 315CrossRefGoogle Scholar
Ho, L.C. (Ed.), 2004, Carnegie Observatories Astrophysics Series, Vol. 1., Coevolution of Black Holes and Galaxies (Cambridge, UK: Cambridge University Press)Google Scholar
Huber, P.J., 1981, Wiley Series in Probability and Mathematical Statistics (NewYork: Wiley)Google Scholar
Huchra, J. & Burg, R., 1992, ApJ, 393, 90CrossRefGoogle Scholar
Jarrett, T.H., Chester, T., Cutri, R., Schneider, S., Skrutskie, M. & Huchra, J.P., 2000, AJ, 119, 2498CrossRefGoogle Scholar
Jarrett, T.H., 2004, PASA, 21, 396Google Scholar
Jones, D.H. et al. , 2004, MNRAS, 355, 747Google Scholar
Jones, D.H. et al. , 2009, MNRAS, in press (arXiv:0903.5451)Google Scholar
Jurek, R.J., Drinkwater, M.J., Francis, P.J. & Pimbblet, K.A., 2008, MNRAS, 383, 673CrossRefGoogle Scholar
Kewley, L.J., Heisler, C.A., Dopita, M.A. & Lumsden, S., 2001, ApJs, 132, 37CrossRefGoogle Scholar
Kewley, L.J., Groves, B., Kauffmann, G. & Heckman, T., 2006, MNRAS, 372, 961Google Scholar
Kuraszkiewicz, J., Wilkes, B.J., Schmidt, G., Ghosh, H., Smith, P.S., Cutri, R., Hines, D., Huff, E.M., McDowell, J.C. & Nelson, B., 2009, ApJ, 692, 1143Google Scholar
Low, F.J., Cutri, R.M., Huchra, J.P. & Kleinmann, S.G., 1988, ApJ, 327, L41CrossRefGoogle Scholar
Maddox, N., Hewett, P.C., Warren, S.J. & Croom, S.M., 2008, MNRAS, 386, 1605CrossRefGoogle Scholar
Masci, F.J., Webster, R.L. & Francis, P.J., 1998, MNRAS, 301, 975CrossRefGoogle Scholar
Moultaka, J., Ilovaisky, S.A., Prugniel, P. & Soubiran, C., 2004, PASP, 116, 693Google Scholar
Polletta, M. et al. , 2007, ApJ, 663, 81Google Scholar
Richards, G.T. et al. , 2002, AJ, 123, 2945CrossRefGoogle Scholar
Richards, G.T. et al. , 2003, AJ, 126, 1131CrossRefGoogle Scholar
Sanders, D.B., Phinney, E.S., Neugebauer, G., Soifer, B.T. & Matthews, K., 1989, ApJ, 347, 29Google Scholar
Saunders, W. et al. , 2001, Anglo-Australian Observatory Newsletter, 97, 14Google Scholar
Schneider, D.P. et al. , 2007, AJ, 134, 102Google Scholar
Schlegel, D.J., Finkbeiner, D.P. & Davis, M., 1998, ApJ, 500, 525CrossRefGoogle Scholar
Schmidt, M. & Green, R.F., 1983, ApJ, 269, 352Google Scholar
Sharp, R.G., Sabbey, C.N., Vivas, A.K., Oemler, A., McMahon, R. G., Hodgkin, S.T. & Coppi, P.S., 2002, MNRAS, 337, 1153CrossRefGoogle Scholar
Skrutskie, M.F. et al. , 2006, AJ, 131, 1163CrossRefGoogle Scholar
Smail, I., Sharp, R., Swinbank, A.M., Akiyama, M., Ueda, Y., Foucaud, S., Almaini, O. & Croom, S., 2008, MNRAS, 389, 407Google Scholar
Smith, P.S., Schmidt, G.D., Hines, D.C., Cutri, R.M. & Nelson, B. O., 2002, ApJ, 569, 23CrossRefGoogle Scholar
Spinoglio, L. & Malkan, M.A., 1989, ApJ, 342, 83Google Scholar
Vanden Berk, D.E. et al. , 2001, AJ, 122, 549CrossRefGoogle Scholar
Veron-Cetty, M.P. & Veron, P., 2000, ESO Sci. Rep., 19, 1Google Scholar
Warren, S.J., Hewett, P.C. & Foltz, C.B., 2000, MNRAS, 312, 827CrossRefGoogle Scholar
Watson, F.G., Parker, Q.A. & Miziarski, S., 1998, SPIE, 3355, 834Google Scholar
Webster, R.L., Francis, P.J., Peterson, B.A., Drinkwater, M.J. & Masci, F.J., 1995, Nature, 375, 469CrossRefGoogle Scholar
Wilkes, B.J., Schmidt, G.D., Cutri, R.M., Ghosh, H., Hines, D.C., Nelson, B. & Smith, P.S., 2002, ApJ, 564, L65Google Scholar
Zakamska, N.L. et al. , 2003, AJ, 126, 2125Google Scholar