Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T01:34:28.709Z Has data issue: false hasContentIssue false

Resonant Inverse Compton Scattering above Polar Caps: Gap Acceleration Efficiency for Young Pulsars

Published online by Cambridge University Press:  05 March 2013

Qinghuan Luo
Affiliation:
Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, SA 5005, Australia; qluo@physics.adelaide.edu.au
R. J. Protheroe
Affiliation:
Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, SA 5005, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that for moderately hot polar caps (with effective temperature of ∼106 K), the efficiency of polar gap acceleration is lower compared to the case in which the polar caps are relatively cool and inverse Compton scattering plays no role in controlling the gap. For young pulsars with superstrong magnetic fields (≥109 T) and hot polar caps (with temperature of ≥5 × 106 K), because of the energy loss of electrons or positrons due to resonant inverse Compton scattering in the vicinity of polar caps, pair cascades occur at distances further away from the polar cap, and in this case we have a relatively high acceleration efficiency, with ions carrying most of the particle luminosity.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1998

References

Arons, J. 1996, A&AS, 120, 49 Google Scholar
Arons, J. 1983, ApJ, 266, 215 CrossRefGoogle Scholar
Arons, J., & Scharlemann, E. T. 1979, ApJ, 231, 854 Google Scholar
Bednarek, W., & Karakula, S. 1995, Proc. 24th Int. Conf. on Cosmic Rays, Rome, Vol. 2, p. 279 Google Scholar
Cheng, A. F., & Ruderman, M. A. 1977, ApJ, 214, 598 Google Scholar
Cheng, K. S., Ho, C., & Ruderman, M. A. 1986, ApJ, 300, 500 Google Scholar
Dermer, C. D. 1990, ApJ, 360, 197 Google Scholar
Fawley, W. M., Arons, J., & Scharlemann, E. T. 1977, ApJ, 217, 227 Google Scholar
Greiveldinger, C., et al. 1996, ApJ, 465, L35 Google Scholar
Herold, H. 1979, Phys. Rev., D 19, 2868 Google Scholar
Kawai, N., et al. 1991, ApJ, 383, L65 Google Scholar
Luo, Q. 1996, ApJ, 468, 338 Google Scholar
Michel, F. C. 1974, ApJ, 192, 713 Google Scholar
Ögelman, H. 1991, in Neutron Stars: Theory and Observation, ed. J. Ventura & D. Pines (Dordrecht: Kluwer), p. 87 Google Scholar
Protheroe, R. J. 1984, Nature, 310, 296 Google Scholar
Protheroe, R. J. 1998, in Towards the Millennium in Astrophysics: Problems and Prospects, ed. M. M. Shapiro & J. P. Wefel (Singapore: World Scientific), in pressGoogle Scholar
Protheroe, R. J., & Johnson, P. A. 1996, Astroparticle Phys., 4, 253 Google Scholar
Romani, R. W. 1987, ApJ, 313, 718 Google Scholar
Ruderman, M., & Sutherland, P. G. 1975, ApJ, 196, 51 Google Scholar
Sturner, S. J. 1995, ApJ, 446, 292 Google Scholar
Thompson, D. J., et al. 1994, ApJ, 436, 229 Google Scholar
Ulmer, M. P. 1994, ApJSS, 90, 789 Google Scholar
Xia, X. Y., Qiao, G. J., Xu, X. J., & Hou, Y. Q. 1985, A&A, 152, 93 Google Scholar