Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-29T19:35:08.027Z Has data issue: false hasContentIssue false

A Photometric Study of the Contact Binaries: XY Leo, EE Cet and AQ Psc

Published online by Cambridge University Press:  05 March 2013

Gojko Djurašević
Astronomical Observatory, Volgina 7, 11160 Belgrade, Serbia
Dinko Dimitrov
Institute of Astronomy, Bulgarian Academy of Sciences, Tzarigradsko Chosse 72, 1784 Sofia, Bulgaria
Bojan Arbutina
Astronomical Observatory, Volgina 7, 11160 Belgrade, Serbia
Berahitdin Albayrak*
Ankara University, Faculty of Science, Department of Astronomy and Space Sciences, 06100, Tandoğan, Ankara, Turkey
Selim Osman Selam
Ankara University, Faculty of Science, Department of Astronomy and Space Sciences, 06100, Tandoğan, Ankara, Turkey
Olga Atanacković-Vukmanović
Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
ECorresponding author. E-mail:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

New photoelectric BV light curves of three close eclipsing binaries XY Leo, EE Cet and AQ Psc were observed and studied with the aim to derive the physical parameters of these systems. The following results were obtained: (a) the W-type contact binary system XY Leo is in a marginal overcontact configuration (fover ∼ 2.4%) with a relatively large temperature difference between the components (∼330K); (b) due to the proximity of the companion of EE Cet in the visual binary ADS 2163, the light curves of EE Cet were contaminated by the third light, having a relatively large impact on the system-parameter estimates, and the solutions made with the third light parameter, L3 ∼ 0.54, describe EE Cet as a high-overcontact (fover ∼ 33%) W-type system; (c) the A-type W UMa contact eclipsing binary AQ Psc is in an overcontact configuration (fover ∼ 20%). The relatively small temperature difference (∼150K) and large difference in component masses suggest a significant energy transfer through the connecting neck of the common envelope. The absolute system parameters are obtained by combining our photometric solution with the spectroscopic elements given by other authors.

Research Article
Copyright © Astronomical Society of Australia 2006


Barden, S. C. 1987, ApJ, 317, 333 CrossRefGoogle Scholar
Claret, A. 2000, A&A, 363, 1081Google Scholar
Djurasševic´, G. 1992a, Ap&SS, 196, 241 Google Scholar
Djurasševic´, G. 1992b, Ap&SS, 197, 17 Google Scholar
Djurasševic´, G., Zakirov, M., Hojaev, A. & Arzumanyants, G. 1998, A&AS, 131, 17 Google Scholar
Djurasševic´, G., Albayrak, B., Tanriverdi, T. & Erkapic´, S. 2004a, A&A, 415, 283 Google Scholar
Djurasševic´, G., Albayrak, B., Selam, S. O., Erkapic´, S. & Senavci, H. V. 2004b, New A, 9, 425 CrossRefGoogle Scholar
Dommanget, J. & Nys, O. 2002, Observations et Travaux, 54, 2 Google Scholar
Dorman, B., Nelson, L. A. & Chau, W. Y. 1989, ApJ, 342, 1003Google Scholar
ESA, 1997, The Hipparcos and Tycho Catalogs, SP-1200Google Scholar
Flannery, B. P. 1976, ApJ, 205, 217 CrossRefGoogle Scholar
Gazeas, K. D. & Niarchos, P. G. 2006, MNRAS, 370, L29 Google Scholar
Gehlich, U. K., Prolss, J. & Wehmeyer, R. 1972, A&A, 18, 477 Google Scholar
Hilditch, R. W. 1981, MNRAS, 196, 305 CrossRefGoogle Scholar
Høg, E., Fabricius, C., Makarov, V. V., Urban, S., Corbin, T., Wycoff, G., Bastin, U., Schwekendiek, P. & Wicenec, A. 2000, A&A, 355, L27 Google Scholar
Hoffmeister, C. 1934, AN, 253, 193 Google Scholar
Hrivnak, B. J. 1985, ApJ, 290, 696 CrossRefGoogle Scholar
Kaluzny, J. & Pojmanski, G. 1983, AcA, 33, 277 Google Scholar
Kwee, K. K. & van Woerden, H. 1956, BAN, 12, 327 Google Scholar
Lampens, P., Oblak, E., Duval, D. & Chareton, M. 2001, A&A, 374, 132 Google Scholar
Lu, W. & Rucinski, S. M. 1999, AJ, 118, 515 Google Scholar
Lucy, L. B. 1967, ZA, 65, 89 Google Scholar
Lucy, L. B. 1976, ApJ, 342, 1003Google Scholar
Marquardt, D. W. 1963, J. Soc. Ind. Appl. Math., 11, 431 Google Scholar
Pan, L. & Cao, M. 1998, Ap&SS, 259, 285 Google Scholar
Popper, D. M. 1980, ARA&A, 18, 115 Google Scholar
Pribulla, T. & Rucinski, S. M. 2006, AJ, 131, 2986Google Scholar
Robertson, J. A. & Eggleton, P. P. 1977, MNRAS, 179, 359 Google Scholar
Rucinski, S. M. 1999, AcA, 19, 245 Google Scholar
Rucinski, S. M., Lu, W., Capobianco, C. C., Mochnacki, S. W., Melvin Blake, R. & Thomson, J. R. 2002, AJ, 124, 1738Google Scholar
Sarma, M. B. K. & Radhakrishnan, K. R. 1982, IBVS, 2073Google Scholar
Stepien, K. 2006, AcA, 56, 199 Google Scholar
Wang, J. M. 1994, ApJ, 434, 277 Google Scholar
Wilson, R. E. & Devinney, E. J. 1971, ApJ, 166, 605 Google Scholar
Yakut, K., Ibanoglu, C., Kalomeni, B. & Degirmenci, O. L. 2003, A&A, 401, 1095Google Scholar
Yakut, K. & Eggleton, P. P. 2005, ApJ, 629, 1055 CrossRefGoogle Scholar
Yamasaki, A. 1981, Ap&SS, 77, 75 Google Scholar
Yamasaki, A. 2005, Ap&SS, 296, 277 Google Scholar