Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T10:12:21.291Z Has data issue: false hasContentIssue false

Photometric Properties of White Dwarf Dominated Halos

Published online by Cambridge University Press:  05 March 2013

Hyun-chul Lee*
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University, Melbourne VIC 3122, Australia
Brad K. Gibson
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University, Melbourne VIC 3122, Australia
Yeshe Fenner
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University, Melbourne VIC 3122, Australia
Chris B. Brook
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University, Melbourne VIC 3122, Australia
Daisuke Kawata
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University, Melbourne VIC 3122, Australia
Agostino Renda
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University, Melbourne VIC 3122, Australia
Janne Holopainen
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University, Melbourne VIC 3122, Australia Tuorla Observatory, Piikkiö FIN-21500, Finland
Chris Flynn
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University, Melbourne VIC 3122, Australia Tuorla Observatory, Piikkiö FIN-21500, Finland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using stellar population synthesis techniques, we explore the photometric signatures of white dwarf progenitor dominated galactic halos, in order to constrain the fraction of halo mass that may be locked up in white dwarf stellar remnants. We first construct a 109 M stellar halo using the canonical Salpeter initial stellar mass distribution, and then allow for an additional component of low- and intermediate-mass stars, which ultimately give rise to white dwarf remnants. Microlensing observations towards the Large Magellanic Cloud, coupled with several ground-based proper motion surveys, have led to claims that in excess of 20% of the dynamical mass of the halo (1012 M) might be found in white dwarfs. Our results indicate that (1) even if only 1% of the dynamical mass of the dark halo today could be attributed to white dwarfs, their main sequence progenitors at high redshift (z ≈ 3) would have resulted in halos more than 100 times more luminous than those expected from conventional initial mass functions alone, and (2) any putative halo white dwarf progenitor dominated initial mass function component, regardless of its dynamical importance, would be virtually impossible to detect at the present day, due to its extremely faint surface brightness.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2004

References

Adams, F. C., & Laughlin, G. 1996, ApJ, 468, 586 Google Scholar
Afonso, C., et al. 2003, A&A, 400, 951 Google Scholar
Alcock, C., et al. 2000, ApJ, 542, 281 Google Scholar
Bothun, G. D., Impey, C. D., Malin, D. F., & Mould, J. R. 1987, AJ, 94, 23 Google Scholar
Brook, C., Kawata, D., & Gibson, B. K. 2003, MNRAS, 343, 913 Google Scholar
Chabrier, G. 2001, in White Dwarfs as Dark Matter, eds. H. B. Richer, & B. K. Gibson, http://www.astro.ubc.ca/WD_workshop/talks/ Google Scholar
Chabrier, G., Segretain, L., & Mera, D. 1996, ApJ, 468, L21 Google Scholar
Charlot, S., & Silk, J. 1995, ApJ, 445, 124 Google Scholar
Di Stefano, R. 2000, ApJ, 541, 587 Google Scholar
Durrell, P. R., Harris, W. E., & Pritchet, C. J. 2001, AJ, 121, 2557 Google Scholar
Fich, M., & Tremaine, S. 1991, ARA&A, 29, 409 Google Scholar
Gibson, B. K., & Mould, J. R. 1997, ApJ, 482, 98 Google Scholar
Gould, A., Flynn, C., & Bahcall, J. N. 1998, ApJ, 503, 798 Google Scholar
Hansen, B. M. S. 1998, Nature, 394, 860 Google Scholar
Kim, Y.-C., Demarque, P., Yi, S. K., & Alexander, D. R. 2002, ApJS, 143, 499 Google Scholar
Kuijken, K., & Gilmore, G. 1991, ApJ, 367, L9 Google Scholar
Larson, R. B. 1986, MNRAS, 218, 409 Google Scholar
Lasserre, T., et al. 2000, A&A, 355, L39 Google Scholar
Lee, H.-c., Lee, Y.-W., & Gibson, B. K. 2002, AJ, 124, 2664 Google Scholar
Lee, H.-c., Yoon, S.-J., & Lee, Y.-W. 2000, AJ, 120, 998 Google Scholar
Lejeune, T., Cuisinier, F., & Buser, R. 1998, A&AS, 130, 65 Google Scholar
Madau, P., & Pozzetti, L. 2000, MNRAS, 312, L9 Google Scholar
Preston, G. W., Shectman, S. A., & Beers, T. C. 1991, ApJ, 375, 121 Google Scholar
Ryan, S. G., & Norris, J. E. 1991, AJ, 101, 1865 Google Scholar
Richer, H. B., Hansen, B., Limongi, M., Chieffi, A., Straniero, O., & Fahlman, G. G. 2000, ApJ, 529, 318 Google Scholar
Rubin, V. C., Ford, W. K. Jr, & Thonnard, N. 1980, ApJ, 238, 471 Google Scholar
Ryu, D., Olive, K. A., & Silk, J. 1990, ApJ, 353, 81 Google Scholar
Sahu, K. C., & Sahu, M. S. 1998, ApJ, 508, L147 Google Scholar
Salpeter, E. E. 1955, ApJ, 121, 161 Google Scholar
Smecker, T. A., & Wyse, R. 1991, ApJ, 372, 448 Google Scholar
Waddington, I., et al. 2002, MNRAS, 336, 1342 Google Scholar
Yi, S. 2003, ApJ, 582, 202 Google Scholar
Yi, S., Demarque, P., & Kim, Y.-C. 1997, ApJ, 482, 677 Google Scholar